Dynamic pile testing in Alabama

ASCE TUSCALOOSA BRANCH

SEPTEMBER 22, 2022

RODNEY COLLINS, PH.D., P.E.

Alabama DOT Transitioning to LRFD from ASD

Alabama bridges will be subject to LRFD

Alabama uses a combination of static and dynamic load tests

Nominal Resistance Verification Program (NRVP)	Minimum Testing Requirements	Resistance Factor, φ	Resistance Factor for Small Pile Groups (<5 piles/group)
NRVP-A	Driving criteria established by successful static load test of at least one pile per Geotechnical Site, quality control by dynamic testing of at least two production piles per Geotechnical Site, but no less than 2 percent of the production piles.	0.80	0.64
NRVP-B	Driving criteria established by successful static load test of at least one pile per Geotechnical Site without dynamic testing.	0.75	0.60
NRVP-C	Driving criteria established by dynamic testing conducted on 100 percent of production piles	0.75	0.60
NRVP-D	Driving criteria established by dynamic load test, quality control by dynamic testing of at least two production piles per Geotechnical Site, but no less than 2 percent of production piles.	0.65	0.52
NRVP-E	Driving criteria established by wave equation analysis, without pile dynamic measurements but with field confirmation of hammer performance by driving to refusal.	0.50	0.40

Driven Pile Overview

Deep foundation typically used in very heavy structures (bridges, multi-story buildings, etc.)

Relies on a combination of skin friction and tip resistance

Pile capacity function of:

- Material driven through
- Depth driven
- Material bearing on pile tip

Driven Pile Analysis

Hand calculations for skin friction

- Total Stress method (alpha)
- Effective Stress method (beta)

GRLWEAP

PDA Analysis

CAPWAP

APILE

APILE used to estimate axial pile capacity

Difficult to predict end bearing in hard rock

Four methods can be used to determine axial capacity

- FHWA
- USACE
- API
- Lambda Method

🗱 Depth: -2.1	-	
depth= 0 · 10; Clay	Pile Geometry	
depth= 10 - 20; Sand		
depth= 20 - 30; Clay		
depth= 30 - 40; Sand		
depth= 40 - 50; Clay		
depth= 50 - 100; Sand		
	Print	

Plot Pile Capacity

In-Situ Pile Testing

Performed to understand actual stresses in strains in *piles, resisting medium* and pile capacity

Static load test

PDA (pile driving analyzer)

Pile instrumented with strain gauge and accelerometer

Static Load Testing

Time Consuming

Expensive

Potential for danger

 $\rho \frac{\partial^2 u}{\partial t^2} = E \frac{\partial^2 u}{\partial x^2}$

PDA Analysis

PDA based on one dimensional wave equation

Piles instrumented with strain gauge and accelerometer

Wave Equation Analysis of Pile Driving (WEAP)

Should be used during design phase

Uses 1-D wave equation

Calculates soil resistance, dynamic pile stresses, and estimated capacities based on field data, hammer and pile type.

Can be used to help select appropriate hammer and driving system

Can help determine if a pile will become overstressed at certain depth or if refusal is likely prior to desired penetration depth

Estimates driving time

CAPWAP

Matches field data to soil data

Best method for determination of pile capacity

Can be used to determine internal pile properties

Performed in the office after collection of field data

Should pick blow count with high energy

CAPWAP(R) 2014-3-Building & Earth Sciences, Inc. - [pda pile 348_204-RWC]

o ×

PDA Experiences on Alabama Projects

Pile	Maximum Allowable Driving Stress (ksi)	Average Max Compressive Stress (ksi)	Average Max Bottom Stress (ksi)
HP 12 x 53	45	35.5	39.8
HP 12 x 53	45	25.2	17.0
HP 14 x 89	45	32.4	25.4
HP 12 x 53	45	26.8	20.4

Experience shows measured pile capacity typically exceeds predicted capacity

Specified depths for driving typically conservative

Stresses measured in piles show us piles capable of supporting additional loading

University of Alabama Water Tower

- HP 12x53 piles driven using a Junttan Model PM16 Hydraulic Hammer
- Designed with 400 kip ultimate capacity
- Estimated blow count at termination of 65 blows per foot, based on GRLWEAP
- 4 piles tested using PDA

Pile #	Case Ultimate Capacity (kips)	Max Compressive Stress (ksi)	Max Bottom Stress (ksi)
9A	489.7	36.4	36.8
20A	483.7	34.6	31.2
2A	481.6	35.8	30.4
14A	491	35.4	30.6

Concrete Piles

- 14 in. square prestressed concrete piles (6000psi) driven with a ICE I30 Diesel Hammer
- •75 foot piles (240 kip capacity)
- 96 foot piles (440 kip capacity)
- 6 piles tested using PDA

Pile #	Required Ultimate Capacity (kips)	Ultimate Capacity at End of Initial Drive (kips)	Ultimate Capacity after 72 hours (kips)
35	440	366.4	737.5
147	440	385.4	665.6
199	440	360.2	663.4
116	240	178	365.9
75	240	-	306.1
35	240	113.9	412.5

Questions

