Automated, Connected, Electric, Shared, Safe Mobility

ACES²

MOBILITY

Alabama Transportation Institute

April 28, 2022

Mission

The mission of the Alabama Transportation Institute at The University of Alabama is to <u>facilitate and reflect</u> <u>world-class leadership in</u> <u>interdisciplinary transportation research</u> <u>that serves the State of Alabama and</u> <u>beyond.</u>

THE UNIVERSITY OF

Alabama Transportation Institute

ATI Affiliated Centers at UA

ATI partners with a wide variety of research centers at the University of Alabama. Together we can serve the community through a truly interdisciplinary approach.

Alabama Center for Insurance Information and Research CULVERHOUSE COLLEGE OF BUSINESS

Center for Advanced Vehicle Technologies COLLEGE OF ENGINEERING

Center for Sustainable Infrastructure COLLEGE OF ENGINEERING

Institute of Data and Analytics CULVERHOUSE COLLEGE OF BUSINESS

Transportation Policy Research Center RESEARCH & ECONOMIC DEVELOPMENT

Center for Business and Economic Research CULVERHOUSE COLLEGE OF BUSINESS

Center for Advanced Public Safety

COLLEGE OF ENGINEERING

Center for Transportation Operations, Planning and Safety COLLEGE OF ENGINEERING

Laboratory for Location Science COLLEGE OF ARTS AND SCIENCES

Alabama Transportation Institute

/ RESEARCH THEME ONE /

Digital Transportation

Modern transportation simultaneously generates and relies on enormous amounts of data as the operational requirements to provide accessibility and mobility become increasingly linked to development of smart, connected cities and communities. ATI is embracing the challenge and opportunity of the new data-driven transportation paradigm by cultivating and supporting expertise in the efficient and secure collection, storage, and analysis of transportation-derived data.

/ RESEARCH THEME FOUR /

Electric Vehicles & Fuel Economy

In recognition of the finite supply, security challenges, and environmental consequences associated with fossil fuel consumption, the world is begun preparing for a global shift in how transportation will be powered in the future.

Through rigorous, academic research in partnership with a range of industry and governmental stakeholders, ATI is at the forefront of designing the next generation of electric vehicles and the infrastructure necessary to integrate them into the transportation system.

/ RESEARCH THEME TWO /

Connected Vehicles & Infrastructure

ATI

Research

Themes

As communications technologies continue to pervade human life and civil society, the physical components of the transportation system will continue to be increasingly connected to each other. ATI is leading research, in the laboratory and in the field, to design and test the latest equipment and protocols that will be necessary to realize the full potential of these new transportation technologies.

/ RESEARCH THEME THREE /

Transportation Safety, Security, & Accessibility

Access to safe and secure transportation is foundational to an economically dynamic and socially inclusive society. ATI fosters an interdisciplinary research portfolio aimed at enhancing quality of life by connecting individuals, communities, and economies via a highly functional transportation system that balances the mandate to provide cost effective, efficient solutions with the needs of the full range of potential system users.

/ RESEARCH THEME FIVE /

Sustainable Transportation Infrastructure

Functional transportation infrastructure is the foundation of vibrant communities and economies. ATI facilitates both basic and applied research into new materials, designs, as well as construction and maintenance techniques to enhance the sustainability and resiliency of surface transportation infrastructure.

OUR MISSION

•

To fuel innovative research in the field of e-mobility and bring together academia, industry, and government to pursue advancements in electrification and digitization.

TIMELINE

September 2020 Idea Proposed

November 2020 Initial Strategic Plan Developed with a consultant

April 2021 MOU signed with Alabama Power and MBUSI to establish AMP

July 2021 State of Alabama awards \$16.5M to construct the Smart Communities and Innovation Building

January 2022 Executive Director search initiated

SMART COMMUNITIES AND INNOVATION BUILDING

Looking Southeast from Kirkbride Lane

Looking Northeast from Randall Way

EXECUTIVE DIRECTOR SEARCH

Implement a vision for electric vehicle research and education including basic cell materials and chemistry, battery pack management, manufacturing, and integration of electric vehicles into the power grid.

Work closely with existing centers affiliated with the Alabama Transportation Institute and external stakeholders to support collaborative proposal development and project management for large team efforts.

Provide effective leadership over the full range of disciplines represented by the AMP Center.

Foster and support high quality research and scholarly activities within the AMP Center by ensuring a stimulating, collegial, and well-managed environment.

MAJOR THEMES

Preparing the electric vehicle workforce

)3

Creating innovations in electric vehicle R&D, including battery technology and manufacturing and use

02

Driving collaborations between industry and UA

Developing effective and sustainable vehicle charge infrastructure

Evaluating Transportation Network Mobility and Enhancing Traffic Signal Operations Performance Using Probe Data and Connected Vehicle Technology

Md Abu Sufian Talukder

Doctoral Dissertation Defense

Alex Hainen

College of Engineering Civil, Construction and Environmental Engineering

June 11, 2021

Presentation Outline

A

- Past Academic Credentials and Projects
 - Credentials and Experience
 - Coursework
 - Field Works and Projects Involvements

Dissertation Discussion

- Dissertation Motivation
- **Paper #1:** Characterizing Transportation Network Mobility [**Published**]
- Paper #2: Trajectory-Based Signal Control [Published]
- Paper #3: Connected Freight Signal Priority System[Published]
- Dissertation Conclusions
 - Novelty and Contribution to Academia and Industry
 - Future Research Directions

Dr. Sufian Talukder, PhD – AECOM 2021

- Completed Masters in Civil Engineering in Summer 2018
- President and Member ITE Student Chapter at UA
- Teaching Experience
 - **Taught Classes:** CE 350 Intro to Transportation Engineering, CE 458 – Traffic Engineering, CE 573 – Statistical Applications
- Publications and Presentations

- 1. [Published] <u>Talukder, M.</u>, Lidbe, A., Tedla, E., Hainen, A. and Atkison, T., 2021. Trajectory-Based Signal Control in Mixed Connected Vehicle Environments. *ASCE Journal of Transportation Engineering Part A: Systems.*
- 2. [Published] <u>Talukder, M</u>., Hainen, A., Remias, S., Bullock, D. 2018. Route Based Mobility Performance Metrics Using Probe Vehicle Travel Times, *Advances in Transportation Studies*.
- **3.** [Published] Islam, N., <u>Talukder, M</u>., Hainen, A., Atkison, T., 2019, Characterizing Co-modality in Urban Transit Systems from a Passengers Perspective, *Journal of Public Transport*.
- 4. [Published] Li, H., Hainen, A, Sturdevant, J., Atkison, T., <u>Talukder, M.</u>, et.al. 2019 Indiana Traffic Signal Hi Resolution Data Logger Enumerations, *Indiana Department of Transportation and Purdue University, West Lafayette, Indiana*.
- 5. [Presented] <u>Talukder, M.</u> and Hainen, A., 2021. A Digital Twin for Traffic Monitoring and Proactive Incident Management. USDOT ITS PCB T3e Webinar.
- 6. [Presented] <u>Talukder, M.</u>, Lidbe, A., Tedla, E., Hainen, A. and Atkison, T., 2021. Development and Evaluation of a Weighted Delay-Based Signal Control Algorithm for Connected and Non- Connected Vehicles. *Transportation Research Board 100th Annual Meeting*
- 7. [Presented] Penmetsa, P., <u>Talukder, M.</u>, Islam, N., Adanu, E., Li, X., Harbin, K. and Hainen, A., 2021. Analysis of Emergency Incidents Regarding Natural Gas Distribution Pipelines. *Transportation Research Board 100th Annual Meeting*.
- 8. [Presented] <u>Talukder, M.</u>, Hainen, A. and Atkison, T. 2019. Enhanced Traffic Signal Performance Measures. *Gulf Region Intelligent Transportation Society (GRITS)*.
- **9.** [Presented] Zephaniah, S., <u>Talukder, M.</u>, Hainen, A. and Jones, S. 2017. A Comprehensive Examination of the Relationship between Crashes and Congestion along Interstate Highways in Alabama. *Road Safety Simulation International Conference*.

Analytical and Empirical Evaluation of Freight Priority System in Connected Vehicle Environment

Presented June 2021

Analytical and Empirical Evaluation of Freight Priority System in Connected Vehicle Environment

Md Abu Sufian Talukder1; Elsa G. Tedla2; Alexander M. Hainen, Ph.D., M.ASCE3; and Travis Atkison, Ph.D.4

Ph.D. Student, Dept. of Civil, Construction and Environmental Engineering, Univ. of Alabama, P.O. Box 870288, Tuscaloosa, AL 35487-0205 (corresponding author). Email: mtalukder@crimson.ua.edu ²Assistant Research Engineer, Alabama Transportation Institute, Univ. of Alabama, P.O. Box 870288, Tuscaloosa, AL 35487-0205. Email: egtedla@eng.ua.edu ³Associate Professor, Dept. of Civil, Construction and Environmental Engineering, Univ. of Alabama, P.O. Box 870288, Tuscaloosa, AL 35487-0205. Email: ahainen@eng.ua.edu

⁴Assistant Professor, Dept. of Computer Science, Univ. of Alabama, P.O. Box 870290, Tuscaloosa, AL 35487-0205. Email: atkison@cs.ua.edu

Introduction

Traffic signal priority is an operational strategy from Intelligent Transportation System (ITS) which has been generally used in the form of Transit Signal Priority (TSP) to improve operation performance of transit vehicles. In recent years, several research efforts and implementations indicate the operational benefit that can be achieved from TSP which notably includes reduced travel time and delays, fewer no of stops, improved schedule adherence, and lower emissions (Muthuswamy, et al., 2007; Ekeila, et al., 2009; Liao & Davis, 2011; Wang, et al., 2013; Yelchuru, et al., 2014; Hu, et al., 2014; Ahn, et al., 2015; Song,

Published April 2022

Analytical and Empirical Evaluation of Freight Priority System in Connected Vehicle Environment

> Md Abu Sufian Talukder¹; Elsa G. Tedla²; Alexander M. Hainen, Ph.D., M.ASCE3; and Travis Atkison, Ph.D.4

Abstract: The transit signal priority (TSP) strategy has been widely adopted as a practical approach to improving the efficiency and reliability of transit operations. Over the years, few studies have adopted the concept of TSP to implement freight signal priority (FSP) for improving the safety and operational performances of freight vehicles. Despite the promising outcome in previous studies, several drawbacks, such as inaccurate estimation of a freight's arrival time at a stop bar and inefficient use of priority measures, have prevented their wide applications. This paper aims to develop a FSP system that utilizes emerging connected vehicle technology to overcome the challenges associated with conventional FSP systems. An estimated time of arrival (ETA)-based FSP logic was developed and analytically examined to demonstrate the operational efficiency that can be achieved. The proposed FSP system was implemented in a real-world coordinated signalized corridor for systematical analysis and validation of its field operation. Analysis results showed that the proposed FSP system can effectively address the shortcomings in traditional FSP systems by accurately estimating a freight's arrival time and providing accurate and efficient priority measures. DOI: 10.1061/JTEPBS.0000673. © 2022 American Society of Civil Engineers.

Author keywords: Freight signal priority (FSP); Signal control; Priority logic; Connected vehicle; Field experiment.

Introduction

Traffic signal priority is an operational strategy from intelligent transportation systems (ITS) and has been generally used in the form of transit signal priority (TSP). In recent years, several research efforts and implementations have indicated the operational benefit achievable from TSP, which notably includes redu ced travel time and delays, fewer number of stops, improved schedule adherence, and lower emissions (Muthuswamy et al. 2007; Ekeila et al. 2009; Liao and Davis 2011; Wang et al. 2013; Yelchuru et al. 2014; Hu et al. 2014: Ahn et al. 2015: Song et al. 2016: Lee et al. 2017: Wu and Guler 2018). Similar to TSP, freight signal priority (FSP) can be a feasible solution to improving the safety and operational efficiency of freight vehicles on signalized arterials. However, relatively fewer studies have been performed concerning FSP. The majority of these studies relied on a simulation environment due to the difficulties and costs associated with field deployments.

With the limited freight-detection technology that exists in conventional traffic environments, most research on FSP focuses on using traditional loop detectors to activate priority requests (Sunkari

¹Ph.D. Student, Dept. of Civil, Construction and Environmental Enginering, Univ. of Alabama, PO. Box 870288, Tuscaloosa, AL 35457-0205 (corresponding author). ORCID: https://orcid.org/0000-0001-7673-5669. Email: mtalukder@crimson.ua.edu

²Assistant Research Engineer, Alabama Transportation Institute, Univ. of Alabama, P.O. Box 870288, Tuscaloosa, AL 35487-0205. Email: egtedla@eng.ua.edu ³Associate Professor, Dept. of Civil, Construction and Environmental En-gineering, Univ. of Alabama, P.O. Box 870288, Tuscaloosa, AL 35487-0205.

Email: ahuinen@eng.ua.edu ⁴Assistant Professor, Dept. of Computer Science, Univ. of Alabama, P.O. Box 870290, Tuscaloosa, AL 35487-0205. Email: atkison@cs.ua.edu Note. This manuscript was submitted on July 7, 2021; approved on Janury 7, 2022; published online on April 7, 2022. Discussion period open until September 7, 2022; separate discussions must be submitted for individual papers. This paper is part of the Journal of Transportation Engi-neering, Part A: Systems, © ASCE, ISSN 2473-2907.

O ASCE

which is generally accomplished by an extending green phase or truncating red phase for the priority movement. In the United States, the first TSP was introduced back in the 1970s (Evans and Skiles 1970). Since then, numerous studies have been conducted to demonstrate the benefits achievable from TSP. However, very limited re-

04022029-1 J. Transp. Eng., Part A: Systems 15

J. Transp. Eng., Part A: Systems, 2022, 148(6): 04022029

et al. 2000; Plum 2004; Mahmud 2014; Kaisar et al. 2020). One major drawback in a loop-detection system is its inability to accu-

rately predict freight arrival time at an intersection, which could lead to the inefficient use of priority measures. Such challenges associated with a traditional detection system can be addressed by taking advantage of emerging connected vehicle (CV) technology, which establishes rapid two-way communications between freight vehicles and intersection infrastructure. In recent years, a few studies have investigated leveraging CV technology to provide signal priority to freight vehicles (Kari et al. 2014; Ahn et al. 2015; University of Arizona, University of California PATH Program, and Savari Networks and Econolite 2016; Park et al. 2019). Although these early efforts are valuable guidelines for FSP research, they were conducted in a simulated environment and limited to the assumption of 100% vehicle-to-infrastructure (V2D communication in place. Furthermore, these studies lack comprehensive FSP logic, systematic evaluation, and a framework on how emerging CV data are to be handled by existing traffic signal controllers.

This research attempts to overcome these shortcomings by developing a FSP system that relies on CV-based freight detection strategy for existing signal control equipment. The study developed an estimated time of arrival (ETA)-based priority logic for pilot deployment and uses high-resolution event-based operational traffic data to systematically evaluate the proposed priority system. The study also showd the benefit of such ETA-based freight priority system in the context of previous studies in this area

Literature Review

TSP is the most conventional form of traffic signal priority strategy. search has been done regarding FSP. In 2019, the Urban Mobility

USDOT List of CAV Applications

V2I Safety

Environment

Red Light Violation Warning Curve Speed Warning Stop Sign Gap Assist Spot Weather Impact Warning Reduced Speed/Work Zone Warning Pedestrian in Signalized Crosswalk Warning (Transit)

V2V Safety

Emergency Electronic Brake Lights (EEBL)

Forward Collision Warning (FCW) Intersection Movement Assist (IMA) Left Turn Assist (LTA) Blind Spot/Lane Change Warning (BSW/LCW) Do Not Pass Warning (DNPW) Vehicle Turning Right in Front of Bus Warning (Transit)

Agency Data

Probe-based Pavement Maintenance Probe-enabled Traffic Monitoring Vehicle Classification-based Traffic Studies CV-enabled Turning Movement & Intersection Analysis CV-enabled Origin-Destination Studies Work Zone Traveler Information Eco-Approach and Departure at Signalized Intersections Eco-Traffic Signal Timing Eco-Traffic Signal Priority Connected Eco-Driving Wireless Inductive/Resonance Charging Eco-Lanes Management Eco-Speed Harmonization Eco-Cooperative Adaptive Cruise Control Eco-Traveler Information Eco-Ramp Metering Low Emissions Zone Management AFV Charging / Fueling Information Eco-Smart Parking Dynamic Eco-Routing (light vehicle,

transit, freight) Eco-ICM Decision Support System

Road Weather

Motorist Advisories and Warnings (MAW) Enhanced MDSS Vehicle Data Translator (VDT) Weather Response Traffic Information (WxTINFO)

Mobility

Advanced Traveler Information System Intelligent Traffic Signal System (I-

SIG)

Signal Priority (transit, freight) Mobile Accessible Pedestrian Signal System (PED-SIG) Emergency Vehicle Preemption (PREEMPT) Dynamic Speed Harmonization (SPD-HARM) Queue Warning (Q-WARN) Cooperative Adaptive Cruise Control (CACC) Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG) Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) Emergency Communications and Evacuation (EVAC) Connection Protection (T-CONNECT) Dynamic Transit Operations (T-DISP) Dynamic Ridesharing (D-RIDE) Freight-Specific Dynamic Travel Planning and Performance Drayage Optimization

Smart Roadside

Wireless Inspection Smart Truck Parking

A

USDOT High-Priority Dynamic Mobility Applications with CV Technology

Intelligent Transportation Systems Joint Program Office. "USDOT High-Priority Dynamic Mobility Applications". Research and Innovative Technology Administration, U.S. Department of Transportation.

A

Freight Overturned in Northport, Alabama

First Traffic Signal Priority Application in 1970

- Location: Los Angeles, CA
- Detection Technique: Handheld two-position manual switch for driver
- **Objective:** Reduce overall person delay
- **Results:** 70-76% Reduction in bus passenger delay.

Evans, H., and Skiles, G. (1970). "Improving public transit through bus preemption of traffic signals". Traffic Quarterly, 24(4), pp: 531–543.

Improving Public Transit through Bus Preemption of Traffic Signals

HENRY K. EVANS AND GERALD W. SKILES

Mr. Evans* is a Senior Vice-President of Wilbur Smith and Associates. He received a B.S. in Engineering from the California Institute of Technology and was awarded a fellowship at the Yale University Bureau of Highway Traffic. A registered Professional Engineer, he is a member of the Institute of Traffic Engineers, American Society of Civil Engineers, and the American Marketing Association, and author of many publications on transportation.

Mr. Skiles is Traffic Planning Engineer for the Department of Traffic of the City of Los Angeles, where he is responsible for the Department's planning, design, and research activities. Before joining the city agency in 1956, Mr. Skiles was Assistant District Traffic Engineer for the California Division of Highways in the Los Angeles District. He received a B.S. degree in Electrical Engineering from the University of Washington, and an M.S. in Engineering from University of California (Los Angeles). He is a member of the Institute of Traffic Engineers and a registered Professional Engineer in California.

INCREASING attention is being given across the country to the advantages of providing improved balance in urban transportation systems. Plans and programs are going forward to supplement the private auto with rail rapid transit in the large cities and with better bus systems, both for local and rapid transit service, in smaller areas. These efforts are being made with the knowledge that getting people out of their autos and into public transit vehicles will require a more competitive service. Comfort, convenience, dependability, and attractive surroundings are important, as well as travel time. Generally speaking, it takes twice as long to travel from portal to portal by bus compared to the auto, although rail rapid transit usually does a better job of matching private vehicle travel time.

[•] We deeply regret to announce that we have learned of Mr. Evans' death on September gth, 1970. Over a number of years, Mr. Evans was a valued contributor to TRAFFIC QUARTERLY, having been the author or co-author of four articles. One in particular, "Parking Study Applications," which appeared in 1963, is still frequently requested as an important reference in the study of parking and trip generation.

Previous Literature - Conventional Loop Detection for Freight Priority

Year	Location	Priority Vehicle Type	Detection Technique	Objective	Results							
2000	Sunkari, S. R., H. Charara, and T. Urbanik. (2000). "Reducing Truck Stops at High-Speed Isolated Traffic Signals". TTI Report No. FHWA/TX-01/1439-8. Texas Department of Transportation, Austin											
	Sullivan City, Texas	Freight	Loop Detector	Reduce Freight stops	5,000 fewer freight stops							
2014	Mahmud, M. (20 Blvd Intersection University, Portlo	914). "Evaluation of ". Civil and Environn and, OR	Truck Signal Priori nental Engineering	ty at N Columbia Blvd an Master's Project Report:	d Martin Luther King Jr. s. Portland State							
2014	Portland, OR	Freight	Loop Detector	Reduce freight delay and no of stop(s)	13%-20% delay reduction and 9%- 16% stop reduction							
	Kaisar, E. I., Hadi Priority Strategie Contract No BDV	, M., Ardalan, T., an es in Multi-Modal Co 27-977-14. Florida l	d Iqbal, M. S. (202 prridor for Improvin Department of Tra	0). "Evaluation of Freight ng Transit Service Reliabi nsportation (FDOT), Talla	: and Transit Signal lity and Efficiency". hassee, Florida							
2020	Broward County, FL	Freight	Loop Detector	Reduce freight travel time and delay	22% reduction in travel time and 29% delay reduction							

Ă

Study Objectives

- Developing a <u>signal priority system</u> to facilitate freight movement by leveraging CV technology to <u>improve</u> upon traditional priority systems.
- Establish an <u>ETA-based FSP logic</u> and analytically identify <u>shortcoming</u> related to traditional priority system.
- Conducting <u>field deployment</u> and performing systematic analysis for <u>validating</u> field operation of the proposed FSP system.

A

Traditional Loop Detection Issues

A

Traditional Loop Detection Issues

23

A

Traditional Loop Detection Issues

A

Traditional Loop Detection Issues

25

ETA Priority System – LOTS of settings and configurations

A

Loop Detection – Inaccurate Priority Measure!

Actual Trajectory

Estimated Trajectory after 1st Detection

----- Estimated Trajectory after 2nd Detection

ETA-Based Detection- Accurate Priority Measure - Co-Phase Extension

Actual Trajectory

Estimated Trajectory after 1st Detection

----- Estimated Trajectory after 2nd Detection

Loop Detection – Inaccurate Priority Measure!

Actual Trajectory

Estimated Trajectory after 1st Detection

----- Estimated Trajectory after 2nd Detection

ETA-Based Detection- Accurate Priority Measure - Co-Phase Early Green

Actual Trajectory

Estimated Trajectory after 1st Detection

..... Estimated Trajectory after 2nd Detection

Offset: 10sec

Analytical Testing

Design Speed: 50MPH

Cycle Length: 120sec

Total Cases: 2,520 Loop Detection Accuracy: 2,382 (95%)

ETA-based Detection Accuracy: 2,500 (100%)

Inaccurate Priority Measures

Maximum Extension: 15sec

31

Field Deployment

A

Field Deployment – System Architecture

A

Field Deployment – Corridor Monitoring

Airport Rd.	Walmart/Lowes	Harper Rd.	US-43/Main Ave.	AL–69N
DELOPATIVOS PATOJ SECOI PH.1PE.1UD.1SY.1 PHASE12345656 CPHZ.10 0150 0 500 1501000 0 USED-10 0150 0 500 1501000 0 0 USED-10 03343 0 0 2343 0 0 UMEC-10 0 0 0 0 0 0 0 PED-10 0 0 0 0 0 0 0 0 PED-10 0	PRIORITYOD PARCAL SEG01 FH.1FR.1UN.1SV.1 FMASE123456678 S45678 S45678 CHPLF11.10.0 00 150 300 150 300 USED*10 0 243 0 0 0 50 0 USED*10 0 0 43 0 0 0 0 0 0 PRED*10 0 0 0 0 0 0 0 0 PRED*10 0 0 0 0 0 0 0 0 0 PRED*10 0 0 0 0 0 0 0 0 0 0 COMD TIMERS SEQ: 01 SEQ: 01 SEQ: 01 SEXTEM 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRIORITYOD EARC11 SEQ01 FH.1ER.1UN.1SY.1 PHASE. 1.1.23.45670 CPH2-10 150 800 250 300 150 800 250 USED=10 112 0 0 112 0 0 HHC-10 0 0 0 0 0 0 PEXT=10 0 0 0 0 0 0 0 PEXT=10 0 0 0 0 0 0 0 0 COCORD TIMERS SEQ: 01 SYSTEM 021 PRM/INH/BEC/FLN 6 55 ACTIVE 6 6 55 ACTIVE 6 0 0 5 STINC: 48 PHSE 1-0 5-0 0 0 ADJUST 0 0 0 OADJUST 0 0	PART PRIOG PARC11 SEQ02 FH.1EN.1UN.1SV.1 PHASE 1.1 2.1 3.1 4.5 5.6 7.7 PEASE 200 500 400 400 500 400 400 UEEP10 307 175 0 0 452 0 IMEC+10 107 312 0 0 25 0 IMEC+10 0 -14 -14 -8 0 14 -14 PEXT+10 1 <	PRIORITYOD ERTOIL SEGGE PH.1ER.1UM.13Y.1 PHASE1.23.45678 USEDPIO 200 600 400 300 250 550 0 0 USEDPIO 0 0 253 0 0 0 0 0 0 USEDPIO 0 0 253 0 0 0 0 0 0 PHACTIO 0 0 253 0 0 0 0 0 0 PHECTIO 0 0 253 0 0 0 0 0 0 0 PHECTIO 0 0 0 253 0 0 0 0 0 0 PHECTIO 0 0 0 0 0 0 0 0 0 0 PEXTAID 0 0 0 0 0 0 0 0 0 0 PEXTAID 0 0 0 0 0 0 0 0 0 0 PEXTAID 0 0 0 0 0 0 0 0 0 0 CORD TIMERS 2E2: 02 SYSTEM 02 CY F RING1234. 13 65 SETING 40 0 0 ADJUST 0 17 65 ACTIVE 17 0 0 ADJUST 0 SYNC: 47 PHSE 3-0 COER: SW PERM 3-
Tyler Dr.	Hospital Rd.	Hunter Creek Rd.	Northbrook Dr.	Watermelon Rd.
PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1 PHA5E 12345678 CPH2*10 300 850 200 150 200 0 350 USED*10 0 0 0 0 0 0 0 0 IMPC*10 0 0 0 0 0 0 0	PRIORITY00 PATO21 SEQ01 PH.IPR.IUN.ISY.1 PHASE 12345678 CPHZ+10 250.0020 0.250 0.1250 0.0 USED+10 76 0 0 76 0 0 INEC+10 0 0 0 0 0 0 0 IMEC+10 0 0 0 0 0 0 0	PRIORITY00 PAT021 SEQ03 FH.1PR.1UN.1SY.1 PHASE 11.2345678 CHEZ+10 1501000 200 USED+10 0 150 1501000 USED+10 0 0 0 0 PEFD+10 0 0 0 0 0	PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1 PRASE12345678 CM.250 SO1100 0 250 CHH2+10 1501100 0 250 SO1100 0 250 USED*10 01078 0 01078 0 IMEC*10 0 0 0 0 0	PRIORITYO0 PATO21 SEQ03 PH.1PR.1UN.1SY.1 PHASE 1.2345678 CPHZ*10 370 660 250 220 260 770 220 250 USED*10 74 0 0 527 0 0 IMPC*10 0 0 527 0 0 IMPC*10 0 0 0 527 0 <

PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1 /	PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1	PRIORITYOO PATO21 SEQ03 PH.1PR.1UN.1SY.1	PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1	PRIORITY00 PAT021 SEQ03 PH.1PR.1UN.1SY.1
PHASE12345678	PHASE12345678	PHASE12345678	PHASE12345678	PHASE12345678
CPHZ*10 300 850 200 150 250 900 0 350	CPHZ*10 2501000 0 250 01250 0 0	CPHZ*10 1501000 200 150 1501000 200 150	CPHZ*10 1501100 0 250 1501100 0 250	CPHZ*10 370 660 250 220 260 770 220 250
USED*10 0 95 0 0 0 283 0 0	USED*10 76 0 0 0 0 76 0 0	USED*10 0 156 0 0 0 66 0 0	USED*10 01078 0 0 01078 0 0	HSED#10 74 0 0 0 0 527 0 0
IMPC*10 0 0 0 0 0 0 0 0	IMPC*10 0 0 0 0 0 0 0 0	TMPC*10 0 0 0 0 0 0 0 0	IMPC*10 0 0 0 0 0 0 0 0	TMPC*10 0 0 0 0 0 0 0
PRED*10 0 0 0 0 0 0 0 0	PRED*10 0 0 0 0 0 0 0 0	PPED*10 0 0 0 0 0 0 0	PRED*10 0 0 0 0 0 0 0	
PEXT*10 0 0 0 0 0 0 0	PEXT*10 0 0 0 0 0 0 0	PEXT+10 0 0 0 0 0 0 0 0	PEVT*10 0 0 0 0 0 0 0 0	PRED-10 0 0 0 0 0 0 0 0 0
		PEXI-10 0 0 0 0 0 0 0 0 0	FEAT-10 0 0 0 0 0 0 0 0 0	PEXT*10 0 0 0 0 0 0 0 0 0
PPHZ*10 0 0 0 0 0 0 0 0	PPHZ*10 0 0 0 0 0 0 0 0	PPHZ*10 0 0 0 0 0 0 0 0	PPHZ*10 0 0 0 0 0 0 0 0	PPHZ*10 0 0 0 0 0 0 0 0
COORD TIMERS SEQ: 01	COORD TIMERS SEQ: 01	COORD TIMERS SEQ: 03	COORD TIMERS SEQ: 01	COORD TIMERS SEC: 03
SYSTEM 021 PRM/INH/BEG/PLN	SYSTEM 021 PRM/INH/BEG/PLN	SYSTEM 021 PRM/INH/BEG/PLN	SYSTEM 021 PRM/INH/BEG/PLN	SYSTEM 021 PRM/INH/BEG/PLN
CYC OFF RING1234	CYC OFF RING1234	CYC OFF RING1234	CYC OFF RING1234	CVC OFF RING 1 2 3 4
150 45 SETING 30 90 .	150 42 SETING 25 125	150 50 SETING 15 15	150 120 SETING 110 110	150 105 CETTUC 27 77
				150 125 SEIING 37 77
146 45 ACIIVE 1 86	143 42 ACTIVE 18 118	2 50 ACTIVE 2 2	71 120 ACTIVE 31 31	76 125 ACTIVE 29 29
0 0 ADJUST 0 0	0 0 ADJUST 0 0	0 0 ADJUST 0 0	0 0 ADJUST 0 0	0 0 ADJUST 0 0
SYNC: 48 PHSE 1-0 6-1	SYNC: 48 PHSE 1-0 6-1	SYNC: 47 PHSE 4-0 8-0	SYNC: 48 PHSE 2-1 6-1	SYNC: 48 PHSE 1-0 6-1
CORR: SW PERM 2- 6-H	CORR: SW PERM 1-V 6-H	CORR: SW PERM 4- 8-	CORR: SW PERM 2-H 6-H	CODD: SW DEDM 1-V 6-H
				CONTRACT OF CONTRACT.

Indian Hills Dr.	Academy Dr.	Rice Mine Rd.					
PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1	PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1	PRIORITY00 PAT021 SEQ01 PH.1PR.1UN.1SY.1					
PHASE12345678	PHASE12345678	PHASE12345678					
CPHZ*10 1501200 0 150 1501200 0 150	CFHZ*10 200 800 0 500 200 800 300 200	CPHZ*10 01200 0 300 01200 0 300					
USED*10 0 233 0 0 0 233 0 0	USED*10 0 84 0 0 84 0 0 0	USED*10 02626 0 0 02626 0 0					
IMPC*10 0 0 0 0 0 0 0 0	IMPC*10 0 0 0 0 0 0 0 0	IMPC*10 0 0 0 0 0 0 0 0					
PRED*10 0 0 0 0 0 0 0 0	PRED*10 0 0 0 0 0 0 0 0	PRED*10 0 0 0 0 0 0 0 0					
PEXT*10 0 0 0 0 0 0 0 0	PEXT*10 0 0 0 0 0 0 0 0	PEXT*10 0 0 0 0 0 0 0 0					
PPHZ*10 0 0 0 0 0 0 0 0	PPHZ*10 0 0 0 0 0 0 0 0	PPHZ*10 0 0 0 0 0 0 0 0					
COORD TIMERS SEO: 01	COORD TIMERS SEQ: 01	COORD TIMERS SEQ: 01					
SYSTEM 021 PRM/INH/BEG/PLN	SYSTEM 021 YLD/INH/BEG/CYC	SYSTEM 021 PRM/INH/BEG/PLN					
CYC OFF RING12	CYC OFF RING1234	CYC OFF RING1234					
150 40 SETING 120 120	150 60 SETING 20 20	150 95 SETING 120 120					
141 40 ACTIVE 111 111	11 60 ACTIVE 11 11	46 95 ACTIVE 16 16					
0 0 ADTIIST 0 0	0 0 ADJUST 0 0	0 0 ADJUST 0 0					
SVNC+ 48 PHSE 2-1 6-1	SYNC: 48 PHSE 1-0 5-0	SYNC: 48 PHSE 2-1 6-1					
	CORP: SW DEPM 1- 5-	COPP: SW DEDM 2-H 6-H					
CORR: SW PERM 2-H 6-H	CORR. DW FERM IS 55	Cond. on Frida 2-n 6-n					

-	
_	
_	

Field Deployment – Glance Priority Data

Device Local		Interession	Time	Headg	ETA	Distance	Speed	Greens	Greens	Comms	Dulo	Preempt	
Date	Time	Intersection	Secs	(Deg)	Secs	(FT)	(mph)	1	2	Cell/Radio	Kule	Active	Status
May-07-2021	9:56:02 AM	P_US82-Harper_Rd (5817)	0	254	40	3097	52	-26		Cell	2	34	Prior Confirm
	9:56:05 AM		3	254	37	2867	52	-26		Both	99	99	Prior Confirm
	9:56:13 AM		11	254	30	2326	52	-26		Both	3	35	Prior Confirm
	9:56:22 AM		20	253	20	1575	53	-26		Both	4	36	Prior Confirm
	9:56:45 AM		43	85	255	112	49	-26		Both	5	37	ОК
	9:56:48 AM		46	78	255	315	46	-26		Both	5	None	ок
May-07-2021	9:57:12 AM	P_US82-US43 (5816)	0	254	49	3780	52	38		Cell	1	33	ОК
	9:57:24 AM		12	254	40	2966	50	38		Both	2	34	ок
	9:57:31 AM		19	254	35	2467	47			Cell	99	99	ок
	9:57:36 AM		24	254	31	2064	45	16		Both	99	99	Prior Confirm
	9:57:51 AM		39	253	19	1155	40	16		Both	4	36	Prior Confirm
	9:58:02 AM		50	252	30	692	16	6		Both	99	99	Prior Confirm
	9:58:08 AM		56	252	38	604	11	-26		Both	99	99	Prior Confirm
	9:58:23 AM		71	105	255	98	39	-2		Both	5	37	ок
	9:58:28 AM		76	78	255	404	43	-25		Both	5	37	ок
	9:58:33 AM		81	76	255	528	44	-25		Both	5	None	ок
May-07-2021	9:58:48 AM	P_69N-US82 (3401)	0	25	49	3189	43	16		Cell	1	33	Prior Confirm
	9:58:56 AM		8	28	42	2697	43	6		Cell	1	33	Prior Confirm
	9:59:01 AM		13	29	40	2451	42	-26		Cell	99	99	Prior Confirm
	9:59:09 AM		21	31	30	1900	42	-26		Cell	3	35	Prior Confirm
	9:59:19 AM		31	34	20	1286	42	-26		Cell	4	36	Prior Confirm
	9:59:34 AM		46	34	5	351	41	-2		Cell	99	99	Prior Confirm
	9:59:40 AM		52	134	255	75	43	-25		Cell	5	37	ОК
	9:59:44 AM		56	118	255	318	42	-25		Cell	5	37	ОК
	9:59:50 AM		62	115	255	499	42	-25		Cell	5	None	ок
May-07-2021	9:59:05 AM	P_US82-Tyler_Dr (5815)	0	32	49	3140	43	-26		Both	1	33	Prior Confirm
	9:59:15 AM		10	34	40	2530	42	-26		Both	2	34	Prior Confirm

35

Field Deployment – ATSPM Hi-Resolution Traffic Events Data

ASPM			Alabama Department of Transportation
Measures • Reports • Log Action Taken Links • FAQ UDOT Tr	affic Signal Documents * ATSPM Manuals * ATSPM Presentations * About		Register Log in
Signal			
Signal Selection		Chart Selection	Timing and Actuation Options
Signal ID 63082006 Select US82 @ AL69N Signal List Signal Map Region Select Region	Metric TypeSelect a Metric	Metrics List Purdue Phase Termination Split Monitor Pedestrian Delay Preemption Details Timing And Actuation Approach Volume Approach Delay Arrivals On Red Purdue Coordination Diagram Daily Arrivals On Green Left Turn Gap Analysis	 Legend Header For Each Phase Combine Lanes for Phase Dot and Marker Size Phase Filter Comma or Dash List Phase and Global Custom Codes Chart Options Vehicle Signal Display Options
Booth Estates	Hanner Estates Sokal Det Umeria Signal #63082006 US82 AL69N Indian Lake Morthport Or ways as to For Ways as to	Start Date 05/07/2021 9:00 AM ~ End Date 05/07/2021 11:59 PM ~ Reset Date PM ~ PM ~ PM ~	Image: wide wide wide wide wide wide wide wide

Field Deployment – ATSPM Hi-Resolution Traffic Events Data

Signal ID	Timestamp	Event Code	Event Parameter	Event Description
63082009	5/7/2021 10:00:14	82	4	Phase 4 Detector On
63082009	5/7/2021 10:00:14	81	4	Phase 4 Detector Off
63082009	5/7/2021 10:00:15	9	1	Phase 1 End Yellow Clearance
63082009	5/7/2021 10:00:15	10	1	Phase 1 Begin Red Clearance
63082009	5/7/2021 10:00:15	82	2	Phase 2 Detector On
63082009	5/7/2021 10:00:15	81	2	Phase 2 Detector Off
63082009	5/7/2021 10:00:15	82	33	Priority Detector 33 On
63082009	5/7/2021 10:00:14	9	3	Phase 3 End Yellow Clearance
63082009	5/7/2021 10:00:14	10	7	Phase 7 Begin Red Clearance
63082009	5/7/2021 10:00:14	81	3	Phase 3 Detector Off
63082009	5/7/2021 10:00:14	82	7	Phase 7 Detector On
63082009	5/7/2021 10:00:15	9	1	Phase 1 End Yellow Clearance
63082009	5/7/2021 10:00:15	10	6	Phase 6 Begin Red Clearance
63082009	5/7/2021 10:00:15	81	1	Phase 1 Detector Off
63082009	5/7/2021 10:00:15	82	6	Phase 6 Detector On

Ă

Field Deployment – Test Drives

Date		04/27	/2021		04/29/2021 05/03/2021			05/06/2021					05/07/2021					
Intersection	Drive 1	Comms	Drive 2	Comms	Drive 3	Comms	Drive 4	Comms	Drive 5	Comms	Drive 6	Comms	Drive 7	Comms	Drive 8	Comms	Drive 9	Comms
Airport Rd.	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	ERTG	Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio
Walmart/Lowes	GB	Cell & Radio	ERTG	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio
Harper Rd.	GB	Cell & Radio	GB	Cell & Radio	ERTG	Cell & Radio	GB	Cell & Radio	GB	Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio
US-43	ERTG	Cell & Radio	ERTG	Cell & Radio	ERTG	Cell & Radio	GB	Cell & Radio	ERTG	Radio	ERTG	Cell & Radio	ERTG	Cell & Radio	ERTG	Cell & Radio	EXT	Cell & Radio
AL-69N	GB	Cell	GB	Cell	GB	No Comms	GB	No Comms	GB	Cell	ERTG	Cell	GB	Cell	GB	Cell	EXT	Cell
Tyler Dr.	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	EXT	Cell & Radio
Hospital Dr.	ERTG	Radio	GB	Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	EXT	Cell & Radio
Hunter Creek Rd.	ERTG	Radio	ERTG	Radio	ERTG	Cell & Radio	EXT	Cell & Radio	ERTG	Radio	GB	Cell & Radio	ERTG	Cell & Radio	ERTG	Cell & Radio	ERTG	Cell & Radio
Northbrook Dr.	ERTG	Radio	GB	Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio	GB	Cell & Radio
Watermelon Rd.	GB	No Comms	Stop	No Comms	GB	Cell	EXT	Cell	Stop	No Comms	GB	Cell	GB	Cell	ERTG	Cell	GB	Cell
Indian Hills Dr.	GB	No Comms	GB	No Comms	GB	Cell	GB	Cell	GB	No Comms	GB	Cell	GB	Cell	GB	Cell	GB	Cell
Academy Dr.	GB	No Comms	GB	No Comms	GB	Cell	GB	Cell	GB	No Comms	GB	Cell	GB	Cell	GB	Cell	GB	Cell
Rice Mine Rd.	GB	No Comms	GB	No Comms	GB	Cell	GB	Cell	GB	No Comms	GB	Cell	GB	Cell	GB	Cell	GB	Cell
Travel Time (minutes)	14.44	×	12.55	×	10.08	×	8.53	×	11.28	×	9.48	~	9.32	√	10.15	1	9.70	✓

A

Field Test Results

		Detection Parameters				Decision Parameters			Possi	ible Outco	omes	Detectio	Eveneted	Field				
Intersection	Detection	D _i	DS _i	dmc _i	dlc _i	Active Phases	$\widehat{T_{SB}}$	CS _{NORM}	CS _{MAX}	COORD _i	EXT _i	ERTG _i	n Outcome	Expected Decision	Decisio n			
	Detection 1	9:57:07 AM	35827	127	136	Phase 3 & 8	36			1	0	0	COORD					
-43	Detection 2	9:57:18 AM	35838	138	147	Phase 3 & 8	37	4.4	02	1	0	0	COORD	EVT	EVT			
ns.	Detection 3	9:57:32 AM	35852	2	11	Phase 1 & 6	41	44	02	1	0	0	COORD		EAT			
	Detection 4	9:57:46 AM	35866	16	25	Phase 1 & 6	45			0	1	0	EXT	·				
	Detection 1	9:58:46 AM	35926	76	10	Phase 1 & 6	60			0	1	0	EXT					
N69	Detection 2	9:58:59 AM	35939	89	23	Phase 2 & 6	63	40	67	0	1	0	EXT	EXT	EVT			
AL-(Detection 3	9:59:08 AM	35948	98	32	Phase 2 & 6	62	45		0	1	0	EXT		LAI			
	Detection 4	9:59:18 AM	35958	108	42	Phase 2 & 6	62			0	1	0	EXT					
	Detection 1	9:59:04 AM	35944	94	48	Phase 2 & 6	98	94		0	1	0	EXT					
D -	Detection 2	9:59:14 AM	35954	104	58	Phase 2 & 6	98		102	0	1	0	EXT	FYT	FYT			
Tyle	Detection 3	9:59:25 AM	35965	115	69	Phase 2 & 6	99	04	102	0	1	0	EXT		LAT			
	Detection 4	9:59:36 AM	35976	126	80	Phase 2 & 6	100			0	1	0	EXT					
Dr.	Detection 1	9:59:25 AM	35965	115	61	Phase 2 & 6	111			0	1	0	EXT					
tal C	Detection 2	9:59:37 AM	35977	127	73	Phase 2 & 6	113	05	125	0	1	0	EXT	EVT	EVT			
ospi	Detection 3	9:59:46 AM	35986	136	82	Phase 2 & 6	112	33	125	0	1	0	EXT	LAI	LAI			
Ĭ	Detection 4	9:59:54 AM	35994	144	90	Phase 2 & 6	110			0	1	0	EXT					
ek	Detection 1	9:59:49 AM	35989	139	73	Phase 2 & 6	123			0	0	1	ERTG					
Cre	Detection 2	10:00:03 AM	36003	3	87	Phase 1 & 6	127			0	0	1	ERTG					
ıter	Detection 3	10:00:08 AM	36008	8	92	Phase 1 & 6	122	2 94	94	94	94	107	0	0	1	ERTG	ERTG	ERTG
Hun	Detection 4	10:00:15 AM	36015	15	99	Phase 3 & 7	119			0	0	1	ERTG	40				

A

Connected Freight Signal Priority System (ERTG) THE UNIVERSITY OF Connected Freight Signal Priority U.S. Route 82 EB Talukder, Hainen, Tedla, Atkison Friday, 05/07/2021 09:55:00 ALABAMA^{*} Airport Rd. 10:05 PRIORITY00 PAT021 SEO01 PH.1PR.1UN.1SY.1 10:04 PHASE.....1...2...3.. .7...8 10:03 CPHZ*10 01150 10:02 USED*10 01375 0 0 01375 0 Lime (CD1) 10:00 9:59 IMPC*10 0 0 PRED*10 0 0 0 0 PEXT*10 0 0 0 0 Watermelon Rd Walmart/Lowes Northbrook Dr. PPHZ*10 Indian Hills Dr. 0 n Hunter Creek Rice Mine Rd. Academy Dr. Hospital Dr. Airport Rd. Harper Rd. COORD TIMERS SEQ: 01 9:58 Tyler Dr. AL-69N SYSTEM PRM/INH/BEG/PLN US-43 9:57 RING....1. OFF . . 2 3 4

9:56

9:55

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SETING

ACTIVE

ADJUST

PHSE

29

4-0

4.5

4.0

5.0

5.5

6.0

6.5

SYNC:

Connected Freight Signal Priority System 5X (Best Run)

Connected Freight Signal Priority U.S. Route 82 EB Talukder, Hainen, Tedla, Atkison Thursday, 04/29/2021 09:57:01

THE UNIVERSITY OF

A

Connected Freight Signal Priority System

Study Conclusions

- ETA-based FSP system can <u>overcome</u> the shortcomings and <u>enhance</u> operational efficiency of traditional freight priority system.
- Analytical testing revealed that the proposed FSP system can <u>accurately</u> estimate freight's arrival time at the stop bar and can provide accurate and <u>efficient</u> priority measure.
- Field deployment results confirmed the <u>accuracy</u> and <u>consistency</u> of the proposed priority system.

A

Research During COVID

44