

ASTM C1479 vs D2321 $\frac{12ET}{L^2} D_4 = -\frac{WL}{2} \Rightarrow (3/_2L) -\frac{6EI}{L^2} D_3 + D_3 = -\frac{WL}{8EI}$ $\Rightarrow D_3 = -\frac{WL}{8EI}$

• Alec Parliament, P.E. – Technical Resource Engineer for Foley Products Company in AL/FL Panhandle territories.

Designing Pipe for Drainage Systems

What is Required for Design?

AASHTO 12.10-Reinforced Concrete Pipe

12.10.1-General

The provisions herein shall apply to the structural design of buried precast reinforced concrete pipes of circular, elliptical and arch shapes.

The structural design of the types of pipes indicated above may proceed by either of two methods:

- The direct design method at the strength limit state as specified in article 12.10.4.2, or
- The indirect design method at the service limit state as specified in article 12.10.4.3

Flexible Pipe

AASHTO 12.12-Thermoplastic Pipes

12.12.1-General

The provisions herein shall apply to the structural design of buried thermoplastic pipe with solid, corrugated, or profile wall, manufactured of PE, PP, or PVC.

Direct Design:

Hand Calculations Software

Indirect Design:

Flexible Pipe

AASHTO 12.12-Thermoplastic Pipes

12.12.1-General

The provisions herein shall apply to the structural design of buried thermoplastic pipe with solid, corrugated, or profile wall, manufactured of PE, PP, or PVC.

The following Fill Height Tables have been developed by the American Concrete Pipe Association (ACPA) using the indirect design method in accordance with Section 12.10.4.3 of the AASHTO LRFD Bridge Design Specification, 7th Edition, 2014.

Fill Height Tables are based on:

1. γs = 120 pcf

D-Load (lb/ft/ft) for Type 1 Bedding

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition - this gives conservative results in comparison to trench conditions

4. A Type 1 installation requires greater soil stiffness from the surrounding soils than the Type 2, 3, and 4 installations, and is thus harder to achieve.

Therefore, field verification of soil properties and compaction levels should be performed.

						Fill Hei	ight in Fee	et						
Pipe Size (in)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12	1612	1399	888	695	633	620	635	661	544	603	662	721	780	839
15	1546	1344	856	673	614	602	617	644	532	589	646	704	761	818
18	1462	1307	836	660	604	593	608	634	526	583	639	696	752	809
21	1309	1281	823	653	598	588	604	630	525	581	637	693	749	805
24	1287	1262	814	648	595	587	603	629	527	583	638	694	750	805
27	1442	1264	815	653	599	591	608	634	530	586	642	697	753	809
30	1581	1272	819	660	605	598	615	640	535	591	646	702	758	814
33	1443	1222	798	651	599	596	615	641	541	597	653	709	765	821
36	1329	1187	780	643	595	595	616	643	547	603	660	716	772	829
42	1151	1099	745	627	587	591	613	641	553	609	665	721	778	834
48	1019	961	713	614	582	589	612	641	560	616	673	729	785	841
54	969	919	689	604	578	589	613	643	569	625	681	737	794	850
60	994	890	670	596	577	590	615	646	578	634	691	747	804	860
66	946	865	657	589	576	592	618	651	588	644	701	758	814	871

Fill Height Tables are based on: 1. γs = 120 pcf

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1988	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
© 2009 American C	oncrete Pipe Asso	clation, all rights re	eserved.										Resou	urce # 16-201 (Revised 07/09

Design Complete!

Flexible Pipe

AASHTO 12.12-Thermoplastic Pipes

12.12.1-General

Class IV

Class V

Special Design

Class

The provisions herein shall apply to the structural design of buried thermoplastic pipe with solid, corrugated, or profile wall, manufactured of PE, PP, or PVC.

Flexible Pipe

Fill Height Tables are based on: 1. γs = 120 pcf

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1990	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725

Design Complete!

Table 3 Maximum Cover for ADS N-12, N-12 ST, and N-12 WT Pipe (per AASHTO), ft (m)

Diameter		Clas	is 1				Cla	iss 2				Cla	ss 3	
in. (mm)	Comp	acted	Dur	nped	95	5%	90)%	85	% ³	95	5%	90	% ³
4 (100)	37	(11.3)	18	(5.5)	25	(7.0)	10	(5.5)	12	(3.7)	18	(5.5)	-13	(4.0)
6 (150)	44	(13.4)	20	(6.1)	29	(8.8)	20	(6.1)	14	(4.3)	21	(6.4)	15	(4.6)
8 (200)	32	(9.8)	15	(4.6)	22	(6.7)	15	(4.6)	10	(3.0)	16	(4.9)	11	(3.4)
10 (250)	38	(11.6)	18	(5.5)	26	(7.9)	18	(5.5)	12	(3.7)	18	(5.5)	13	(4.0)
12 (300)	35	(10.7)	17	(5.2)	24	(7.3)	17	(5.2)	8	(2.4)	17	(5.2)	11	(3.4)
15 (375)	38	(11.6)	17	(5.2)	25	(7.6)	17	(5.2)	8	(2.4)	18	(5.5)	11	(3.4)
18 (450)	36	(11.0)	17	(5.2)	24	(7.3)	17	(5.2)	8	(2.4)	17	(5.2)	11	(3.4)
24 (600)	28	(8.5)	13	(4.0)	20	(6.1)	13	(4.0)	7	(2.1)	14	(4.3)	10	(3.0)
30 (750)	28	(8.5)	13	(4.0)	20	(6.1)	13	(4.0)	7	(2.1)	14	(4.3)	9	(2.7)
36 (900)	26	(7.9)	12	(3.7)	18	(5.5)	12	(3.7)	7	(2.1)	13	(4.0)	9	(2.7)
42 (1050)	23	(7.0)	11	(3.4)	16	(4.9)	11	(3.4)	7	(2.1)	11	(3.4)	7	(2.1)
48 (1200)	25	(7.6)	11	(3.4	17	(5.2)	11	(3.4)	7	(2.1)	12	(3.7)	7	(2.1)
54 (1350)	ZZ	(6.7)	10	(3.0)	10	(4.9)	10	(3.0)	6	(1.8)	Π	(3.4)	7	(2.1)
60 (1500)	25	(7.6)	11	(3.4)	17	(5.2)	11	(3.4)	6	(1.8)	12	(3.7)	7	(2.1)

Notes:

Class IV

Class V

Special Design

Results based on calculations shown in the Structures section of the ADS Drainage Handbook (v20.7). Calculations assume no hydrostatic pressure and a density of 120 pcf (1926 kg/m³) for overburden material Installation assumed to be in accordance with ASTM D2321 and the Installation section of the Drainage Handbook. 3. For installations using lower quality backfill materials or lower compaction efforts, pipe deflection may exceed the 5% design limit: however controlled deflection may not be a structurally limiting factor for the pipe. For installations where deflection is critical, pipe placement techniques or periodic deflection measurements may be required to ensure satisfactory pipe installation. Backfill materials and compaction levels not shown in the table may also be acceptable. Contact for further detail. Material must be adequately "knifed" into haunch and in between corrugations. Compaction and backfill material is 5. assumed uniform throughout entire backfill zone. Compaction levels shown are for standard Proctor density 7. For projects where cover exceeds the maximum values listed above, contact or specific design considerations.

Flexible Pipe

TECHNICAL NOTE

Minimum and Maximum Burial Depth for Corrugated HDPE Pipe (per AASHTO)

Introduction

The information in this document is designed to provide answers to general cover height questions; the data provided is not intended to be used for project design. The design procedure described in the *Structures* section (Section 2) of the Drainage Handbook provides detailed information for analyzing most common installation conditions. This procedure should be utilized for project specific designs.

The two common cover height concerns are minimum cover in areas exposed to vehicular traffic and maximum cover heights. Either may be considered "worst case" scenario from a loading perspective, depending on the project conditions.

TN 2.01 October 2016

Flexible Pipe

2-2 INTRODUCTION

Class IV

Class V

Special Design

Class

Pipe behavior can be broadly classified as flexible or rigid, depending on how it performs when installed. Flexible pipe must move, or deflect, to transfer the overburden load to the surrounding soil. ADS N-12, HP Storm, SaniTite, SaniTite HP and Singlewall pipes are all examples of flexible pipe. Flexible pipe, therefore, is not designed to carry overburden loads directly. Rigid pipe is commonly defined as a pipe that does not deflect more than 2% without structural distress, and as such, it must be designed to carry the majority of the load directly. Reinforced and nonreinforced concrete pipe are both examples of rigid pipe.

Both flexible and rigid pipe depend on proper backfill. In the case of flexible pipe, deflection allows loads to be transferred to and carried by the backfill. Rigid pipe transmits most of the load through the pipe wall into the bedding. In both cases, proper backfill is very important in allowing this load transfer to occur.

Many research projects have investigated the behavior of flexible pipe. Thermoplastic pipe performance has been investigated through use of actual field installations, post-installation inspections, load cell tests, and finite element computer analyses. Now, three decades after its introduction, the behavior of thermoplastic pipe, including corrugated polyethylene and corrugated polypropylene pipes, has probably been analyzed more than any other conventional drainage pipe.

The information in subsequent areas of this section provides a step-bystep guide for the structural design of nonpressure corrugated polyethylene and polypropylene pipe. The methodology is based on the AASHTO design procedure, and has been proven through test installations and actual projects to be highly conservative. More discussion on actual installations is included in Section 2-5.

Fill Height Tables are based on: 1. γs = 120 pcf 2. AASHTO HL-93 live load

D-Load (lb/ft/ft) for Type 3 Bedding

Positive Projecting Embankment Condition -

s gives conservative results in comparison to trench conditions

Pipe Ld. (inchess) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12 1735 1100 875 800 800 800 975 1050 1125 1225 1980 1400 1475 155 15 1600 1025 855 775 775 825 875 925 100 1175 1250 1375 1450 1525 18 1475 1000 825 775 775 825 875 925 1025 1075 1175 1250 1375 1425 1500 24 1075 925 775 750 750 825 875 925 1025 1100 1175 1250 1375 1425 1500 27 1000 900 775 750 750 750 825 875 900 1025 1100 1175							FI	ll Height	(feet)							
12 1735 1100 875 800 800 850 900 975 1050 1125 1225 1980 1400 1475 1575 15 1600 1025 850 775 775 825 875 950 1025 1100 1275 1375 1425 1525 18 1475 1000 825 775 775 825 875 925 1025 1100 1175 1250 1375 1425 1525 21 1250 950 800 750 750 825 875 925 1025 1075 1175 1250 1375 1425 1500 24 1075 925 775 750 750 825 875 925 1025 1100 1175 1250 1375 1425 1520 30 950 875 750 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1550 33 925 825 <	Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
150 1600 1025 850 775 775 825 875 925 100 1200 1275 1375 1425 152 18 1475 1000 825 775 775 825 875 925 1025 1075 1175 1250 1375 1425 150 24 1075 925 775 750 750 750 825 875 925 1025 1075 1175 1250 1375 1425 1500 27 1000 900 775 750 750 825 875 925 1025 1100 1175 1250 1375 1425 1505 30 950 875 750 750 750 750 825 875 950 1025 1120 1207 1375 1455 1550 333 950 875 700 750 750 750 825 875 950 125 <td>12</td> <td>1735</td> <td>1100</td> <td>875</td> <td>800</td> <td>800</td> <td>850</td> <td>900</td> <td>975</td> <td>1050</td> <td>1125</td> <td>1225</td> <td>1300</td> <td>1400</td> <td>1475</td> <td>1575</td>	12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1300	1400	1475	1575
18 1475 1000 825 775 775 825 875 925 1025 1100 1175 1250 1375 1425 1500 21 1250 950 800 750 750 825 875 925 1025 1075 1175 1250 1375 1425 1500 24 1075 925 775 750 750 750 825 875 925 1025 1100 1175 1250 1375 1425 1500 30 950 875 775 750 750 750 825 875 950 1025 1100 1175 1250 1375 1425 1525 33 925 825 750 750 750 750 750 825 900 125 1100 1205 1305 1425 1550 48 750 700 750 750 775 825 900 975 <td>15</td> <td>1600</td> <td>1025</td> <td>850</td> <td>775</td> <td>775</td> <td>825</td> <td>875</td> <td>950</td> <td>1025</td> <td>1100</td> <td>1200</td> <td>1275</td> <td>1375</td> <td>1450</td> <td>1525</td>	15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
21 1250 950 800 750 750 825 875 925 1025 1175 1250 1375 1425 1500 24 1075 925 775 750 750 825 850 925 1025 1075 1175 1250 1375 1425 1500 27 1000 900 775 750 750 825 875 925 1025 1100 1175 1250 1375 1425 1505 30 950 875 775 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1557 33 925 825 750 750 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1550 48 875 700 750 750 750 825 900 975 1050 1150 </td <td>18</td> <td>1475</td> <td>1000</td> <td>825</td> <td>775</td> <td>775</td> <td>825</td> <td>875</td> <td>925</td> <td>1025</td> <td>1100</td> <td>1175</td> <td>1250</td> <td>1375</td> <td>1425</td> <td>1525</td>	18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
24 1075 925 775 750 750 825 850 925 1025 1175 1250 1375 1425 1500 27 1000 900 775 750 750 825 875 925 1025 1100 1175 1250 1375 1425 1500 30 950 875 775 750 750 825 875 950 1025 1100 1175 1275 1375 1425 1525 33 925 825 750 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1550 36 900 775 750 750 750 825 900 975 1050 1125 1200 1400 1405 1550 48 875 700 700 750 800 850 925 1000 1075 1150 1250 1300<	21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
27 1000 900 775 750 750 825 875 925 100 1175 1250 1375 1425 150 30 950 875 775 750 750 825 875 950 1025 1100 1175 1275 1375 1425 1525 33 925 825 750 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1557 36 900 775 750 750 775 825 900 975 1050 1125 1200 1205 1375 1475 1550 48 875 700 700 750 750 825 900 975 150 1150 1250 1300 1400 1475 1557 48 875 700 700 750 800 850 925 1000 1075 1150 1250	24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
30 950 875 775 750 750 825 875 950 1025 1100 1175 1275 1375 1425 1525 33 925 825 750 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1525 36 900 775 750 750 775 825 875 950 1025 1125 1200 1275 1375 1450 1550 42 850 700 750 750 775 825 900 975 1050 1125 1200 1490 1375 1475 1550 48 875 700 700 750 800 850 925 1000 1075 1150 1250 1400 1500 1575 54 850 750 700 750 800 850 925 1000 1075 1150 1250 </td <td>27</td> <td>1000</td> <td>900</td> <td>775</td> <td>750</td> <td>750</td> <td>825</td> <td>875</td> <td>925</td> <td>1025</td> <td>1100</td> <td>1175</td> <td>1250</td> <td>1375</td> <td>1425</td> <td>1500</td>	27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
33 925 825 750 750 750 825 875 950 1025 1100 1200 1275 1375 1450 1525 36 900 775 750 750 775 825 875 950 1025 1125 1200 1275 1375 1450 1550 42 850 700 750 750 775 825 900 975 1050 1125 1200 1300 1400 1475 1550 48 875 700 700 750 750 825 900 975 1050 1150 1225 1300 1400 1475 1557 54 850 725 700 750 800 850 925 1000 1075 1150 1250 1300 1400 150 155 1600 60 875 750 700 750 800 875 950 1025 1100 <td>30</td> <td>950</td> <td>875</td> <td>775</td> <td>750</td> <td>750</td> <td>825</td> <td>875</td> <td>950</td> <td>1025</td> <td>1100</td> <td>1175</td> <td>1275</td> <td>1375</td> <td>1425</td> <td>1525</td>	30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
36 900 775 750 750 775 825 875 950 1025 1125 1200 1275 1375 1450 1550 42 850 700 750 750 775 825 900 975 1050 1125 1200 1390 1375 1475 1550 48 875 700 700 750 775 825 900 975 1050 1150 1225 1300 1400 1475 1575 54 850 725 700 750 800 850 925 1000 1075 1150 1250 1300 1400 1500 1575 60 875 750 700 750 800 850 925 1000 1100 1175 1250 1350 1450 1550 1605 66 875 775 700 750 800 875 950 1025 1100 1200<	33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
12 850 700 750 750 775 825 900 975 1050 1125 1200 1990 1375 1475 1550 48 875 700 700 750 775 825 900 975 1050 1150 1225 1300 1400 1475 1575 54 850 725 700 750 800 850 925 1000 1075 1150 1250 1300 1400 1500 1575 60 875 750 700 750 800 850 925 1000 1100 1175 1250 1350 1425 1525 1600 66 875 775 700 750 800 875 950 1025 1100 1200 1275 1350 1475 1550 1625 72 850 800 700 750 825 900 975 1050 1125 1300	36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
48 875 700 700 750 775 825 900 975 1050 1150 1225 1300 1400 1475 1575 54 850 725 700 750 800 850 925 1000 1075 1150 1250 1990 1400 1500 1575 60 875 750 700 750 800 850 925 1000 1100 1175 1250 1350 1425 1525 1600 66 875 775 700 750 800 875 950 1025 1100 1200 1275 1350 1450 1550 1625 72 850 800 700 750 825 900 975 1050 1125 1200 1300 1475 1550 1650 78 800 775 750 775 825 900 975 1050 1125 1225 130	42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
54 850 725 700 750 800 850 925 1000 1075 1150 1250 1950 1400 1500 1575 60 875 750 700 750 800 850 925 1000 1100 1175 1250 1350 1425 1525 1600 66 875 775 700 750 800 875 950 1025 1100 1200 1275 1350 1450 1550 1625 72 850 800 700 750 825 900 975 1050 1125 1200 1300 1375 1475 1550 1650 78 800 775 750 775 825 900 975 1050 1125 1225 1300 1400 1475 1575 1650 84 750 750 775 850 900 975 1075 1150 1225 1	48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
60 875 750 700 750 800 850 925 1000 1170 1250 1350 1425 1525 1600 66 875 775 700 750 800 875 950 1025 1100 1200 1275 1350 1425 1505 1625 72 850 800 700 750 825 900 975 1050 1125 1200 1300 1475 1505 1650 78 800 775 750 775 825 900 975 1050 1125 1200 1300 1470 1570 1650 840 750 750 775 850 900 975 1075 1150 1225 1320 1400 1470 1501 1575 900 725 750 775 800 850 925 1000 1075 150 1425 1500 1600 1675	54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
66 875 775 700 750 800 875 950 1025 1100 1275 1350 1450 1550 1625 72 850 800 700 750 825 900 975 1050 1125 1200 1300 1375 1475 1500 1650 78 800 775 750 775 825 900 975 1050 1125 1200 1300 1470 1570 1500 1650 840 750 750 775 850 900 975 1050 1125 1325 1400 1475 1575 1650 900 725 750 775 850 900 975 1075 1150 1225 1325 1400 1500 1575 1675 900 725 750 775 800 850 925 1000 1075 1150 1425 1420 1500 1600	60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
72 850 800 700 750 825 900 975 1050 1125 1200 1300 1375 1475 1550 1650 78 800 775 750 775 825 900 975 1050 1125 1225 1300 1400 1475 1575 1650 84 750 750 775 850 900 975 1075 1150 1225 1300 1400 1475 1575 1650 900 725 750 775 850 900 975 1075 1150 1225 1325 1400 1500 1575 1675 900 725 750 775 800 850 925 1000 1075 1250 1325 1425 1500 1600 1675 960 700 750 775 825 875 925 1000 1100 1175 1250 1450 1525	66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
78 800 775 750 775 825 900 975 1050 1125 1225 1300 1400 1475 1575 1650 84 750 750 775 775 850 900 975 1075 1150 1225 1320 1400 1475 1575 1675 90 725 750 775 800 850 925 1000 1075 1150 1225 1325 1400 1500 1675 1675 90 725 750 775 800 850 925 1000 1075 1150 1225 1325 1425 1500 1600 1675 96 700 750 775 825 875 925 1000 1100 1175 1250 1425 1525 1600 1700 102 725 750 775 825 875 950 1025 1200 1275 1350 <	72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
84 750 750 775 850 900 975 1075 1150 1225 1325 1400 1500 1575 1675 90 725 750 775 800 850 925 1000 1075 1150 1225 1325 1400 1500 1675 90 725 750 775 800 850 925 1000 1075 1150 1225 1325 1425 1500 1600 1675 96 700 750 775 825 875 925 1000 1100 1175 1250 1350 1425 1525 1600 1700 102 725 750 775 825 875 950 1025 1100 1200 1275 1350 1450 1525 1600 1700 102 725 725 720 820 825 900 950 1050 1200 1275 1375	78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
90 725 750 775 800 850 925 1000 1075 1150 1250 1325 1425 1500 1600 1675 96 700 750 775 825 875 925 1000 1170 1175 1250 1325 1425 1525 1600 1700 102 725 750 775 825 875 950 1025 1100 1275 1350 1425 1525 1600 1700 102 725 750 775 825 875 950 1025 1100 1200 1275 1350 1450 1525 1600 1700 108 725 725 800 825 900 950 1050 1200 1275 1375 1450 1550 1625 1725	84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
96 700 750 775 825 875 925 1000 1170 1250 1350 1425 1525 1600 1700 102 725 750 775 825 875 950 1025 1100 1200 1275 1350 1425 1525 1600 1700 108 725 725 800 825 900 950 1050 1125 1200 1275 1350 1450 1525 1625 1700 108 725 725 800 825 900 950 1050 1125 1200 1275 1375 1450 1525 1625 1725	90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
102 725 750 775 825 875 950 1025 1100 1200 1275 1350 1450 1525 1625 1700 108 725 725 800 825 900 950 1050 1125 1200 1275 1350 1450 1550 1625 1700	96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
108 725 725 800 825 900 950 1050 1125 1200 1275 1375 1450 1550 1625 1725	102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
	108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725

rican Concrete Pipe Association, all righ

Design Complete!

Class

Class I

Class IV

Class V

Special Design

Flexible Pipe

Fill Height Tables are based on: 1. $\gamma s = 120 \text{ pcf}$

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

Positive Projecting Embankment Condition this gives conservative results in comparison to trench conditions

							Fi	ll Height	(feet)							
	Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1988	1400	1475	1575
	15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
	18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
	21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
	24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
	27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
	30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
	33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
	36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
	42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
Q	48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
	54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
	60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
	66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
	72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
	78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
	84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
	90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
	96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
	102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
	108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
0	2009 American Co	oncrete Pipe Asso	clation all rights r	eserved										Beso	IDE # 16-201 (Revised 07/0

Design Complete!

SOIL PRISM PRESSURE (P_{sp})

Class

Class I

Class IV

Class V

Special Design

Fill Height Tables are based on: 1. γ s = 120 pcf

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

 Positive Projecting Embankment Condition this gives conservative results in comparison to trench conditions

						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1990	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
© 2009 American C	oncrete Pipe Asso	clation, all rights r	eserved										Besor	urce # 16-201 (Revised 07/09

Design Complete!

Flexible Pipe

Class

Class I

Class IV

Class V

Special Design

Fill Height Tables are based on: 1. $\gamma s = 120 \text{ pcf}$

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition this gives conservative results in comparison to trench conditions

						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1988	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
© 2009 American C	oncrete Pipe Asso	clation, all rights re	eserved.										Reso	urce # 16-201 (Revised 07/09

© 2009 American Concrete Pipe Association, all rights rese

Design Complete!

Flexible Pipe

BUCKLING

 Pipe wall must have sufficient stiffness to remain stable under compression loads.

Class

Class IV

Class V

Special Design

Fill Height Tables are based on: 1. $\gamma s = 120 \text{ pcf}$

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

 Positive Projecting Embankment Condition this gives conservative results in comparison to trench conditions

						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1988	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
@ 2009 American Co	oncrete Dine Asso	clation all dobts n	bernad										Descu	urpa # 16-201 /	Davisori 07/00

Design Complete!

Flexible Pipe

COMBINED STRAINS

• Must check combined strains at extreme fibers since bending strain from deflection creates tension (T) and compression (C) zones

12.12.3.10.2b—Combined Strain

If summation of axial strain, ε_{uc} , and bending strain, ε_{f} , produces tensile strain in the pipe wall, the combined strain at the extreme fiber where flexure causes tension shall satisfy:

$$\varepsilon_f - \varepsilon_{uc} < \phi_f \varepsilon_{yt} \tag{12.12.3.10.2b-1}$$

The combined strain at the extreme fiber where flexure causes compression shall satisfy:

 $\varepsilon_f + \varepsilon_{uc} < \phi_T \left(1.5 \varepsilon_{vc} \right) \tag{12.12.3.10.2b-2}$

Class

Class

Class IV

Class V

Special Design

Fill Height Tables are based on: 1. ys = 120 pcf 0. 445 UTO UTO UTO 02 into load

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

						Fi	II Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1990	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
© 2009 American C	oncrete Pipe Asso	clation, all rights r	eserved.										Reso	urce # 16-201 (Revised 07/09

Design Complete!

Flexible Pipe

DEFLECTION $\Delta_t = \frac{K_B (D_L P_{sp} + C_L P_L) D_o}{1000 \left(\frac{E_p I_p}{R^3} + 0.061 M_s\right)} + \varepsilon_{sc} D$ Circumferential Shortening

- Caused by bending deformation plus circumferential shortening due to thrust
- Controlled by proper soil support and <u>must</u> be verified with a deflection test
- Maximum allowable deflection = 5.0%

I		C	D	n		re	et	e	F	D	p	e	ļ		
II Height Ta γs = 120 p AASHTO I Positive P this gives	ables are b icf HL-93 live I rojecting Er conservativ	oased on: oad mbankment re results in	t Conditior comparis	n - on to tren	D-Load	(lb/ft/f	t) for Ty	/pe 3 E	Beddin	g		Class Class Class	s III	Class Class Specia	IV V al Design
						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1998	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
		705	000	005	000	050	1050	4405	4000	1075	1075	1150	4550	1005	4705

Flexible Pipe

Modified Iowa Formula

Load

Deflection =

Pipe Stiffness + (Constant) (Soil Stiffness)

$$\Delta \mathbf{y} = \frac{1000 \text{K} (\text{D}_{\text{L}} \text{W}_{\text{C}} + \text{W}_{\text{L}})}{0.149 \text{ PS} + 0.061 \text{ E}'}$$

For 48" HDPE, 12 ft. cover, HL-93 Live Load

with PS=18 psi and E'=1,000 psi

1		C	0	n	C	re	et	e	F	Di	p	e			
ill Height T γs = 120 p AASHTO Positive P this gives	Tables are to ocf HL-93 live I Projecting Er conservativ	oased on: oad mbankment re results in	t Conditior I comparis	n - on to tren	D-Load	(Ib /ft/f	t) for Ty	/pe 3 E	Beddin	g		Clas Clas Clas	s I s III	Class Class Specia	IV V al Design
						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1988	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1958	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
	-	705	000	005	000	050	1050	1105	1000	1075	1075	4450	4550	1005	1705

Flexible Pipe

Modified Iowa Formula

Load

Deflection =

Pipe Stiffness + (Constant) (Soil Stiffness)

$$\Delta \mathbf{y} = \frac{1000 \text{K} (\text{D}_{\text{L}} \text{W}_{\text{C}} + \text{W}_{\text{L}})}{0.149 (18) + 0.061 (1000)}$$

For 48" HDPE, 12 ft. cover, HL-93 Live Load

with PS=18 *psi and E*'=1,000 *psi*

		C	0	n	C	re	et	e	F	Di	p	e	Ì		
Ļ															
Fill Height Tables are based on: 1, 15 = 120 pcf 2 AASHTO LH _33 live load															
. Positive P this gives	rojecting Er conservativ	nbankment re results in	t Conditior comparis	n - son to trer	ich conditio	ons						Clas	is III	Specia	al Design
						Fi	ll Height	(feet)							
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1988	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725

Flexible Pipe

Modified Iowa Formula

Load

Deflection =

Pipe Stiffness + (Constant) (Soil Stiffness)

For 48" HDPE, 12 ft. cover, HL-93 Live Load with PS=18 psi and E'=1,000 psi

(

Concrete Pipe															
				••					-	•	ſ		,		
Fill Height Tables are based on: 1. ys = 120 pcf 2. AASHTO HL-93 live load 3. Positive Projecting Embankment Condition -															
this gives	conservativ	e results in	comparis	on to trer	ich conditi	ons									
Dino i d						Fi	ill Height	(feet)				\frown]		
(inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1300	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1990	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
/8	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	15/5	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	15/5	16/5
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	16/5
96	700	750	775	825	8/5	925	1000	1100	11/5	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
D 2009 American C	120	C21	eserved	025	900	950	1050	1125	1200	1275	1375	1450	1550	1020 uros # 16-201 /	1/23 Revised 07/09
							_								

Flexible Pipe

HDPE System Strength

Diameter	Pipe Stiffness	Pipe Contribution	Soil Contribution
12	50	11%	89%
15	42	10%	90%
18	40	9%	91%
24	34	8%	92%
30	28	6%	94%
36	22	5%	95%
42	20	5%	95%
48	18	4%	→ 96%
54	16	4%	96%
60	14	3%	97%

Example 2 D-Load (lb/ft/ft) for Type 3 Bedding)																
this gives	conservativ	/e results ir	n comparis	on to tren	ch conditio	ons										
		1				Fi	ll Height	(feet)								
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15	
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1900	1400	1475	1575	
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525	
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525	
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500	
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500	
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500	
30	950	875	775	750	750	005	075	050	1005	1100	4475	1075	1075	1405	1505	
33	925	825	75													
36	900	775	75											_	_ [
42	850	700	7:						n		N/ 1		ha	1		00
48	875	700	70		U	V		Γ		UV	V	VV		JL	L	
54	850	725	70													
60	875	750	70			_	_	-					_		•	
	875	775	70			R							C	ni		
66		800	70			Ι٧	IU		ЧІ	U :) (J	J			
72	850	1 / / 1	1										-		_	
72 78	850	7750	-7-													
72 78 84	850 800 750	750	77					_		_				-	_	
66 72 78 84 90	850 800 750 725 700	7750 750 750	77 77 77		D	~		+:,		. :	~	~ k		┇╺╋╻		
66 72 78 84 90 96	850 800 750 725 700 725	7750 750 750 750	77 77 77 77		R	ea	BC	ti	or	n i	S	or	าร	it	e	
66 72 78 84 90 96 102 108	850 800 750 725 700 725 725	7750 750 750 750 750 750	77 77 77 77 77		R	ea	ac	ti	or	ı i	S	or	าร	it	e	
000 72 78 84 90 96 102 108 © 2009 American (850 800 750 725 700 725 725 Concrete Pipe Assoc	775 750 750 750 750 725 clation, all rights (77 77 77 77 8(reserved.		R	ea	ac	ti	or	ו ו	S	or	าร	it	e	

Flexible Pipe

SCIENCE!

Designing with Steel - fy = 36 ksi

Mill Certification

Designing with Concrete $- f'_c = 4000 psi$

Compression Test Cylinders

Designing with Soil – E' = 1000 psi

(Should be Science But Often Magic)

The soil was tested = Science

No test report = Magic!

Pipe Installations Similarities & Differences

Flexible Pipe

Installation – Is It Important?

Flexible Pipe

Installation – Is It Important?

WHAT DIFFERENCE DOES IT MAKE???

It's Really Really Youge!!!

IF YOU COULD JUST GO AHEAD AND EXPLAIN THAT

THAT'D BE GRRRREAT

A Closer Look at ASTM C1479 and D2321

What do the Standards Really Say?

Designation: C1479 – 16

Standard Practice for Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations¹

Flexible Pipe

Designation: D2321 – 18

Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications¹

Designation: C1479 - 16

TABLE 3 Equivalent USCS and AASHTO Soil Classifications for Soil Designations

Coll	Representative Soil Types							
501	USCS ASTM Practice D2487	AASHTO M 145						
Category I	Clean, coarse grained soils; SW, SP, GW, GP, or any soil beginning with one of these sym- bols with 12 % or less passing a #200 sieve	A-1, A-3						
Category II	Coarse grained soils with fines: GM, GC, SM, SC, or any soil beginning with one of these symbols, containing more than 12 % passing a #200 sieve Sandy or gravelly fine-grained soils: CL, ML, (or CL-ML, CL/ML, ML/CL) with 30 % or more retained on a #200 sieve	A-2-4, A-2-5, A-2-6, or A-4 or A-6 soils with 30 % or more retained on a #200 sieve						
Category III	Fine-grained soils: CL, ML, (or CL-ML, CL/ML, ML/CL) with less than 30 % retained on a #200 sieve	A-2-7, or A-4 or A-6 with less than 30 % retained on a #200 sieve						
Category IV but not allowed for haunch or bedding	MH, CH, OL, OH, PT	A-5, A-7						

Flexible Pipe

Designation: D2321 - 18

	TABLE 2 Soil Classes	
Soil Group ^A	Soil Class	American Association of State Highway and Transportation Officials (AASHTO) Soil Groups ^B
Crushed rock, angular ^C : 100% passing 1-1/2in. sieve, =15 %<br passing #4 sieve, = 25 % passing<br 3/8in. sieve and = 12 % passing<br #200 sieve	Class I	
Clean, coarse grained soils: SW, SP, GW, GP or any soil beginning with one of these symbols with =12<br % passing #200 sieve ^{DE}	Class II	A1,A3
Coarse grained soils with fines: GM, GC, SM, SC, or any soil beginning with one of these symbols, containing > 12 % passing #200 sieve; Sandy or gravelly fine-grained soils: CL, ML, or any soil beginning with one of these symbols, with > 30 % retained on #200 sieve	Class III	A-2-4, A-2-5, A-2-6, or A-4 or A-6 soils with more than 30% retained on #200 sieve
Fine-grained soils: CL, ML, or any soil beginning with one of these symbols, with =30 %<br retained on #200 sieve	Class IV	A-2-7, or A-4, or A-6 soils with 30% or less retained on #200 sieve
MH, CH, OL, OH, PT	Class V Not for use as embedment	A5, A7

1. Scope

1.1 This practice covers the installation of precast concrete pipe intended to be used for the conveyance of sewage, industrial wastes, and storm water for the construction of culverts.

1.2 This practice is the inch-pound companion to practice C1479; therefore, no SI equivalents are presented in this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of the standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Flexible Pipe

Designation: D2321 – 18

1. Scope

1.1 This practice covers the installation of precast concrete pipe intended to be used for the conveyance of sewage, industrial wastes, and storm water for the construction of culverts.

1.2 This practice is the inch-pound companion to practice C1479; therefore, no SI equivalents are presented in this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of the standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Flexible Pipe

Designation: D2321 – 18

1. Scope

1.1 This practice provides **recommendations** for the installation of buried thermoplastic pipe used in sewers and other gravity-flow applications.

These recommendations are intended to ensure a stable underground environment for thermoplastic pipe under a wide range of service conditions. However, because of the numerous flexible plastic pipe products available and the inherent variability of natural ground conditions, achieving satisfactory performance of any one product may require modification to provisions contained herein to meet specific project requirements.

1. Scope

1.1 This practice covers the installation of precast concrete pipe intended to be used for the conveyance of sewage, industrial wastes, and storm water for the construction of culverts.

1.2 This practice is the inch-pound companion to practice C1479; therefore, no SI equivalents are presented in this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of the standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Flexible Pipe

Designation: D2321 – 18

1. Scope

1.2 The scope of this practice necessarily excludes product performance criteria such as minimum pipe stiffness, maximum service deflection, or long term strength. Thus, it is incumbent upon the product manufacturer, specifier, or project engineer to verify and assure that the pipe specified for an intended application, when installed according to procedures outlined in this practice, will provide a long term, satisfactory performance according to criteria established for that application. A commentary on factors important in achieving a satisfactory installation is included in Appendix X1.

1. Scope

1.1 This practice covers the installation of precast concrete pipe intended to be used for the conveyance of sewage, industrial wastes, and storm water for the construction of culverts.

1.2 This practice is the inch-pound companion to practice C1479; therefore, no SI equivalents are presented in this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of the standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Flexible Pipe

Designation: D2321 – 18

1. Scope

1.2 The scope of this practice necessarily excludes product performance criteria such as minimum pipe stiffness, maximum service deflection, or long term strength. Thus, it is incumbent upon the product manufacturer, specifier, or project engineer to verify and assure that the pipe specified for an intended application, when installed according to procedures outlined in this practice, will provide a long term, satisfactory performance according to criteria established for that application. A commentary on factors important in achieving a satisfactory installation is included in Appendix X1.

2. Referenced Documents

2.1 ASTM Standards: (7 Total) Terminology Manufacture of pipe Soil description, classification & identification

Fotal) sity & moisture

actice for the Direct ast Reinforced Standard Installations

Flexible Pipe

Designation: D2321 – 18

2. Referenced Documents

2.1 ASTM Standards: (23 Total)

Terminology

Soils classification. Solvent cements for PVC Safe solvent handling Guide for construction procedures 2.2 AASHTO Standards: (1 Total) Soil classification

Flexible Pipe

Flexible Pipe

Flexible Pipe

Designation: D2321 – 14^{ε1}

7.6 *Minimum Cover* — ...The minimum depth of cover should be established by the **engineer** based on evaluation of specific project conditions. In the absence of an engineering evaluation, the following minimum cover requirements should be used...

Size	Class I	Class II, III, IV	Hydrohammer
12"	24"	36"	48"
18"	24"	36"	48"
24"	24"	36"	48"
30"	30"	36"	48"
36"	36"	36"	48"
42"	42"	42"	48"
48"	48"	48"	48"
54"	54"	54"	48"
60"	60"	60"	48"

...Do not use hydrohammer-type compactors unless approved by the engineer.

Designation: C1479 – 16

TABLE 2 Standard Trench Installation Soils and Minimum Compaction Requirements

Installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side
Type 1	D _o /24 minimum; not less than 3 in. If rock foundation, use D _o /12 minimum; not less than 6 in.	95 % Category I	90 % Category I, 95 % Category II
Type 2	D _o /24 minimum; not less than 3 in. If rock foundation, use D _o /12 minimum; not less than 6 in.	90 % Category I or 95 % Category II	85 % Category I, 90 % Category II, or 95 % Category III
Туре 3	D _o /24 minimum; not less than 3 in. If rock foundation, use D _o /12 minimum; not less than 6 in.	85 % Category I, 90 % Category II, or 95 % Category III	85 % Category I, 90 % Category II, or 95 % Category III
Type 4	No bedding required, except if rock foundation, use D _o /12 minimum; not less than 6 in.	No compaction required, except if Category III, use 85 % Category III	No compaction required, except if Category III, use 85 % Category III

Designation: D2321 – 18

TABLE 2 Soil Classes American Association of State Highway and Soil Group^A Soil Class Transportation Officials (AASHTO) Soil Groups^B Crushed rock, angular^C: 100% passing 1-1/2in. sieve, </=15 % passing #4 sieve, </= 25 % passing Class I 3/8in. sieve and </= 12 % passing #200 sieve Clean, coarse grained soils: SW. SP. GW. GP or any soil beginning Class II A1,A3 with one of these symbols with </=12 % passing #200 sieve^{DE} Coarse grained soils with fines: GM, GC, SM, SC, or any soil beginning with one of these symbols, containing > A-2-4, A-2-5, A-2-6, or A-4 12 % passing #200 sieve; Sandy or or A-6 soils with more Class III gravelly fine-grained soils; CL, ML, or than 30% retained on any soil beginning with one of these #200 sieve symbols, with > 30 % retained on #200 sieve Fine-grained soils: A-2-7, or A-4, or A-6 soils CL, ML, or any soil beginning with one Class IV with 30% or less retained of these symbols, with </=30 % on #200 sieve retained on #200 sieve Class V MH, CH, OL, OH, PT Not for use A5. A7 as embedment

5. Materials

5.1 *Classification* — Soil types used or encountered in burying pipes include those classified in Table 1 and natural, manufactured, and processed aggregates. The soil classifications are grouped into soil classifications in Table 2 based on the typical soil stiffness when compacted. Class I indicates a soil that generally provides the highest soil stiffness at any given percentage of maximum Proctor density, and provides a given soil stiffness with the least compactive effort....

		00 0		
Soil Class ^A	Class I ^B	Class II	Class III	Class IV
General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media. Suitable for use as a drainage blanket and under drain where adjacent material is suitably graded or when used with a geotextile filter fabric (see X1.8).	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform fine sands (SP) with more than 50 % passing a #100 sieve (0.006 in., 0.15 mm) behave like silts and should be treated as Class III soils.	Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less	Difficult to achieve high-soil stiffness. Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less
Foundation	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above.	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above. Install and compact in 12 in. (300 mm) maximum layers	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6 in. (150 mm) maximum layers	Suitable for replacing over-excavated trench bottom for depths up to 12 in. (300 mm) as restricted above. Use only where uniform longitudinal support of the pipe can be maintained, as approved by the engineer. Install and compact in 6-in (150 mm) maximum layers
Pipe Embedment	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above Difficult to place and compact in the haunch zone.	Suitable as restricted above. Difficult to place and compact in the haunch zone.
Minimum Recommended Percent Compaction, SPD ^D	See Note ^C	85 % (SW and SP soils) For GW and GP soils see Note ^E	90 %	95 %
Relative Compactive Effort Required to Achieve Minimum Percent Compaction	low	moderate	high	very high
Compaction	vibration	vibration	impact	impact
Methods	or impact	or impact		
Required Moisture Control	none	none	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort

TABLE 3 Recommendations for Installation and Use of Soils and Aggregates for Foundation and Pipe-Zone Embedmen

5. Materials

5.2 Installation and Use — Table 3 provides recommendations on installation and use on soil classifications and location in the trench. Soil classes I to IV should be used as recommended in Table 3. Soil Class V, including clays and silts with liquid limits greater than 50, organic soils, and frozen soils, shall be excluded from the pipe-zone embedment.

		-	and ove of cone and riggregates it	aggregates for Foundation and Fipe Zone Embourient				
	Soil Class ^A	Class I ^B	Class II	Class III	Class IV			
	General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media. Suitable for use as a drainage blanket and under drain where adjacent material is suitably graded or when used with a geotextile filter fabric (see X1.8).	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform fine sands (SP) with more than 50 % passing a #100 sieve (0.006 in., 0.15 mm) behave like silts and should be treated as Class III soils.	Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less	Difficult to achieve high-soil stiffness. Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less			
EXCAUATED TRENCH WIDTH	Foundation	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above.	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above. Install and compact in 12 in. (300 mm) maximum layers	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6 in. (150 mm) maximum layers	Suitable for replacing over-excavated trench bottom for depths up to 12 in. (300 mm) as restricted above. Use only where uniform longitudinal support of the pipe can be maintained, as approved by the engineer. Install and compact in 6-in (150 mm) maximum layers			
	Pipe Embedment	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above Difficult to place and compact in the haunch zone.	Suitable as restricted above. Difficult to place and compact in the haunch zone.			
	Minimum Recommended Percent Compaction, SPD ^D	See Note ^C	85 % (SW and SP soils) For GW and GP soils see Note ^E	90 %	95 %			
Cover FIG. 1 Trench Cross Section	Relative Compactive Effort Required to Achieve Minimum Percent Compaction	low	moderate	high	very high			
	Compaction Methods	vibration or impact	vibration or impact	impact	impact			
	Required Moisture Control	none	none	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort			

INITAL-BACKFILL

* See 7.8 Minimum Cover

FOUNDATION (IF REQUIRED)-

TABLE 3 Recommendations for Installation and Use of Soils and Aggregates for Foundation and Pipe-Zone Embedment

	TABLE 3 Recommendations for Installation and Use of Soils and Aggregates for Foundation and Pipe-Zone Embedment							
	Soil Class ^A	Class I ^B	Class II	Class III	Class IV			
	General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media.	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform	Do not use where water conditions in trench prever proper placement and compaction. Not recommended for use	Difficult to achieve high-soil nt stiffness. Do not use where water conditions in trench prevent proper placement			
EXCAUATED TRENCH WIDTH	F B B Fip	WW Ayou Id?	ell doo t in th	es th Ie	s n be ed mum			
	E Minimum Recommended	See Note ^C	85 % (SW and SP soils) For GW and GP soils	90 %	95 %			
	Percent Compaction, SPD ^D	- I	see Note ^E					
FIG. 1 Trench Cross Section	Effort Required to Achieve Minimum Percent Compaction	IOW	moderate	nign	very nign			
	Compaction Methods	vibration or impact	vibration or impact	impact	impact			
	Required Moisture Control	none	none	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort			

INITAL-BACKFILL

SPRINGLINE --HAUNCHING---BEDOING---

* See 7.8 Minimum Cover

FOUNDATION (IF REQUIRED)-

Flexible Pipe

Fill Height Tables are based on: 1. γs = 120 pcf

D-Load (lb/ft/ft) for Type 3 Bedding

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

	Fill Height (feet)														
Pipe i.d. (inches)	1	2	3	4	5	6	7	8	9	10	11 (12	13	14	15
12	1735	1100	875	800	800	850	900	975	1050	1125	1225	1300	1400	1475	1575
15	1600	1025	850	775	775	825	875	950	1025	1100	1200	1275	1375	1450	1525
18	1475	1000	825	775	775	825	875	925	1025	1100	1175	1250	1375	1425	1525
21	1250	950	800	750	750	825	875	925	1025	1075	1175	1250	1375	1425	1500
24	1075	925	775	750	750	825	850	925	1025	1075	1175	1250	1375	1425	1500
27	1000	900	775	750	750	825	875	925	1025	1100	1175	1250	1375	1425	1500
30	950	875	775	750	750	825	875	950	1025	1100	1175	1275	1375	1425	1525
33	925	825	750	750	750	825	875	950	1025	1100	1200	1275	1375	1450	1525
36	900	775	750	750	775	825	875	950	1025	1125	1200	1275	1375	1450	1550
42	850	700	750	750	775	825	900	975	1050	1125	1200	1300	1375	1475	1550
48	875	700	700	750	775	825	900	975	1050	1150	1225	1300	1400	1475	1575
54	850	725	700	750	800	850	925	1000	1075	1150	1250	1950	1400	1500	1575
60	875	750	700	750	800	850	925	1000	1100	1175	1250	1350	1425	1525	1600
66	875	775	700	750	800	875	950	1025	1100	1200	1275	1350	1450	1550	1625
72	850	800	700	750	825	900	975	1050	1125	1200	1300	1375	1475	1550	1650
78	800	775	750	775	825	900	975	1050	1125	1225	1300	1400	1475	1575	1650
84	750	750	775	775	850	900	975	1075	1150	1225	1325	1400	1500	1575	1675
90	725	750	775	800	850	925	1000	1075	1150	1250	1325	1425	1500	1600	1675
96	700	750	775	825	875	925	1000	1100	1175	1250	1350	1425	1525	1600	1700
102	725	750	775	825	875	950	1025	1100	1200	1275	1350	1450	1525	1625	1700
108	725	725	800	825	900	950	1050	1125	1200	1275	1375	1450	1550	1625	1725
		alation all dable a											Deen		Desidence of Color

Design Complete!

Table 3 Maximum Cover for ADS N-12, N-12 ST, and N-12 WT Pipe (per AASHTO), ft (m)

Diameter		Clas	is 1				Cla	ass 2				Cla	ss 3	
in. (mm)	Com	pacted	Dur	nped	9	5%	90	0%	85	% ³	9(5%	90	<mark>%</mark> ³
4 (100)	37	(11.3)	10	(5.5)	25	(7.6)	18	(5.5)	12	(3.7)	18	(5.5)	13	(4.0)
6 (150)	44	(13.4)	20	(6.1)	29	(8.8)	20	(6.1)	14	(4.3)	21	(6.4)	15	(4.6)
8 (200)	32	(9.8)	15	(4.6)	22	(6.7)	15	(4.6)	10	(3.0)	16	(4.9)	11	(3.4)
10 (250)	38	(11.6)	18	(5.5)	26	(7.9)	18	(5.5)	12	(3.7)	18	(5.5)	13	(4.0)
12 (300)	35	(10.7)	17	(5.2)	24	(7.3)	17	(5.2)	8	(2.4)	17	(5.2)	11	(3.4)
15 (375)	38	(11.6)	17	(5.2)	25	(7.6)	17	(5.2)	8	(2.4)	18	(5.5)	11	(3.4)
18 (450)	36	(11.0)	17	(5.2)	24	(7.3)	17	(5.2)	8	(2.4)	17	(5.2)	11	(3.4)
24 (600)	28	(8.5)	13	(4.0)	20	(6.1)	13	(4.0)	7	(2.1)	14	(4.3)	10	(3.0)
30 (750)	28	(8.5)	13	(4.0)	20	(6.1)	13	(4.0)	7	(2.1)	14	(4.3)	9	(2.7)
36 (900)	26	(7.9)	12	(3.7)	18	(5.5)	12	(3.7)	7	(2.1)	13	(4.0)	9	(2.7)
42 (1050)	23	(7.0)	11	(3.4)	16	(4.9)	11	(3.4)	7	(2.1)	11	(3.4)	7	(2.1)
48 (1200)	25	(7.6)	11	(3.4)	17	(5.2)	11	(3.4)	7	(2.1)	12	(3.7)	7	(2.1)
54 (1350)	22	(6.7)	10	(3.0)	16	(4.9)	10	(3.0)	6	(1.8)	11	(3.4)	7	(2.1)
60 (1500)	25	(7.6)	11	(3.4)	17	(5.2)	11	(3.4)	6	(1.8)	12	(3.7)	7	(2.1)

Notes:

Class IV

Class V

Special Design

Results based on calculations shown in the Structures section of the ADS Drainage Handbook (v20.7). Calculations assume no hydrostatic pressure and a density of 120 pcf (1926 kg/m³) for overburden material Installation assumed to be in accordance with ASTM D2321 and the Installation section of the Drainage Handbook. 3. For installations using lower quality backfill materials or lower compaction efforts, pipe deflection may exceed the 5% design limit: however controlled deflection may not be a structurally limiting factor for the pipe. For installations where deflection is critical, pipe placement techniques or periodic deflection measurements may be required to ensure satisfactory pipe installation. Backfill materials and compaction levels not shown in the table may also be acceptable. Contact for further detail. Material must be adequately "knifed" into haunch and in between corrugations. Compaction and backfill material is 5. assumed uniform throughout entire backfill zone. Compaction levels shown are for standard Proctor density 7. For projects where cover exceeds the maximum values listed above, contact or specific design considerations.

Pipe Size	O.D.*	O.D + O.D./3	Clear Each Side
12"	16"	21 ³ ⁄ ₈ "	2 5⁄8"
15"	19-1/2"	26"	3 ¼"
18"	23"	30 5⁄8"	3 7/8"
24"	30"	40"	5"
30"	37"	49 ³ ⁄ ₈ "	6 ¼"
36"	44"	58 ³ ⁄ ₄ "	7 ³ ⁄8"
42"	51"	68 "	8 1⁄2"
48"	58"	77 ³ /8"	9 ⁵ ⁄8"
60"	67"	89 ³ ⁄ ₈ "	11 ³ ⁄8"

Flexible Pipe

Designation: D2321 – $14^{\epsilon 1}$

6. Trench Excavation

6.3 Minimum Trench Width –

			FIG	G. 1 Trench Cross Section		
Pipe Size	O.D.	O.D.+16"	1.25xO.D.+12"	Clear Each Side		
12"	15"	31"	30"	8"		
15"	18"	34"	35"	8 1⁄2"		
18"	21"	37"	38"	8 1⁄2"		
24"	28"	44"	47"	9 1⁄2"		
30"	36"	52"	57"	10 1⁄2"		
36"	42"	58"	65 "	11 1⁄2"		
42"	48"	64"	72"	12"		
48"	54"	70"	80"	13"		
60"	67"	83"	96"	14 ½"		

EXCAVATED TRENCH WI

INITIAL-BACKFILL SPRINGLINE

HAUNCHING

FOUNDATION (IF REQUIRED)

BEDDING-

* See 7.6 Minimum Cover

6" (150 MM) MIN.*

ິ4" (100 MM) MIN.

Designation: D2321 – $14^{\epsilon 1}$

X1.10 Embedment Width for Adequate

Support – In certain conditions, a minimum width of embedment material is required to ensure that adequate embedment stiffness is developed to support the pipe. These conditions arise where insitu lateral soil resistance is negligible, such as in very poor native soils or along highway embankments. Examples of poor native soils include poorly compacted soils and blow counts of five or less, peat, muck, or highly expansive soils. Under these conditions, if the native soil is able to sustain a vertical cut, the minimum embedment width shall be 0.5 pipe diameters on either side of the pipe as shown in Fig. X1.1

FIG. X1.1 Minimum Embedment Width When Trench and Native Soil Can Sustain a Vertical Cut

Pipe Size	0.D.	O.D. / 2	2 x O.D.
12"	15"	7 1⁄2"	30"
15"	18"	9"	36 "
18"	21"	10 1⁄2"	42"
24"	28"	14"	56 "
30"	36"	18"	72"
36"	42"	21"	84"
42"	48"	24"	96 "
48"	54"	27"	108"
60"	67"	33 1⁄2"	134"

Trench Installation

9.0 ft³/ft Soil

Category I – 85% Compaction Category II – 90% Compaction Category III – 95% Compaction

Flexible Pipe

Trench Installation

20.0 ft^3/ft Soil

32.4 ft³/ft Soil

Class I – Compacted Class II – 85% Compaction Class III – 90% Compaction Class IV – 95% Compaction

∰ C1479 – 16

TABLE 2 Standard Trench Installation Soils and Minimum Compaction Requirements

NOTE 1—Compaction and soil symbols (that is, 95 % Category I) refer to a soil material category with a minimum standard proctor density. See Table 3 for equivalent modified proctor values and soil types.

NOTE 2—Type 1 installations require greater soil stiffness from the surrounding soils than the Type 2, 3, and 4 installations. Proper field verification of soil properties and compaction levels must be performed to ensure compliance with the design requirements. See Appendix X2 for more information and guidance.

NOTE 3—For Type 1 installation, crushed rock is not an appropriate material for bedding under the pipe. An uncompacted, non-crushed material must be used under the middle third of the pipe outside diameter. While crushed rock meeting the requirements of this specification may self compact vertically, it will not flow laterally to provide support for the haunches of the pipe. To achieve a 90 to 95 % compaction with crushed rock, work material under the haunch and compact it to achieve the specified density. Otherwise, the specified installation is not achieved.

Note 4-When the trench width specified must be exceeded, the owner shall be notified.

NOTE 5-The trench width shall be wider than shown (Fig. 3) if required for adequate space to attain the specified compaction in the haunch and bedding zones.

NOTE 6-Embankment loading shall be used when trench walls consist of embankment unless a geotechnical analysis is made and the soil in the trench walls is compacted to a higher level than the soil in the backfill zone.

NOTE 7-Required bedding thickness is the thickness of the bedding prior to placement of the pipe.

NOTE 8—"Dumped" ma	aterial without additional compactive effort will	not provide the design haun	ch support required for Type 1 and 2 installations.
Installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side
Туре 1	D _o /24 minimum; not less than 3 in. If rock foundation, use D _o /12 minimum; not less than 6 in.	95 % Category I	Undisturbed natural soil with firmness equivalent to the following placed soils: 90 % Category I, 95 % Category II, or embankment to the same requirements
Туре 2	D _o /24 minimum; not less than 3 in. If rock foundation, use D _o /12 minimum; not less than 6 in.	90 % Category I or 95 % Category II	Undisturbed natural soil with firmness equivalent to the following placed soils: 85 % Category I, 90 % Category II, 95 % Category III, or embankment to the same requirements
Туре 3	D _o /24 minimum; not less than 3 in. If rock foundation, use D _o /12 minimum; not less than 6 in.	85 % Category I, 90 % Category II, or 95 % Category III	Undisturbed natural soil with firmness equivalent to the following placed soils: 85 % Category I, 90 % Category II, 95 % Category III, or embankment to the same requirements
Туре 4	No bedding required, except if rock foundation, use D _o /12 minimum; not less than 6 in.	No compaction required, except if Category III, use 85 % Category III	No compaction required, except if Category III, use 85 % Category III

Flexible Pipe

Designation: D2321 – 18

7. Installation

7.5.1 *Percent Compaction of Embedment* — The Soil Class (from Table 2) and the required percent compaction of the embedment should be established by the **engineer** based on an evaluation of specific project conditions (see X1.6.2). The information in Table 3 will provide satisfactory embedment stiffness and is based on achieving an average modulus of soil reaction, *E'*, of 1000 psi (or an appropriate equivalent constrained modulus, M_s).

TABLE 3 Re	commendations for Installation	and Use of Soils and Aggregates f	or Foundation and Pipe-2	Lone Embedment
Soil Class ^A	Class I ^B	Class II	Class III	Class IV
General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media. Suitable for use as a drainage blanket and under drain where adjacent material is suitably graded or when used with a geotextile filter fabric (see X1.8).	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform fine sands (SP) with more than 50 % passing a #100 sieve (0.006 in., 0.15 mm) behave like silts and should be treated as Class III soils.	Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less	Difficult to achieve high-soil stiffness. Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less
Foundation	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above.	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above. Install and compact in 12 in. (300 mm) maximum layers	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6 in. (150 mm) maximum layers	Suitable for replacing over-excavated trench bottom for depths up to 12 in. (300 mm) as restricted above. Use only where uniform longitudinal support of the pipe can be maintained, as approved by the engineer. Install and compact in 6-in (150 mm) maximum layers
Pipe Embedment	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above Difficult to place and compact in the haunch zone.	Suitable as restricted above. Difficult to place and compact in the haunch zone.
Minimum Recommended Percent Compaction, SPD ^D	See Note ^C	85 % (SW and SP soils) For GW and GP soils see Note ^E	90 %	95 %
Relative Compactive Effort Required to Achieve Minimum Percent Compaction	low	moderate	high	very high
Compaction Methods	vibration or impact	vibration or impact	impact	impact
Required Moisture Control	none	none	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort

^A Class V materials are unsuitable as embedment. They may be used as final backfill as permitted by the engineer.

^B Class I materials have higher stiffness than Class II materials, but data on specific soil stiffness values are not available at the current time. Until such data are available the soil stiffness of placed, uncompacted Class I materials can be taken equivalent to Class II materials compacted to 95% of maximum standard Proctor density (SPD95), and the soil stiffness of compacted Class I materials can be taken equivalent to Class II materials compacted to 100% of maximum standard Proctor density (SPD90). Even if placed uncompacted (that is, dumped), Class I materials should always be worked into the haunch zone to assure complete placement.

^C Suitable compaction typically achieved by dumped placement (that is, uncompacted but worked into haunch zone to ensure complete placement).

^D SPD is standard Proctor density as determined by Test Method D698.

^E Place and compact GW and GP soils with at least two passes of compaction equipment.

Flexible Pipe

7. Installation

X1.6.2 *Embedment Compaction* - Embedment compaction requirements should be determined by the engineer based on deflection limits established for the pipe, pipe stiffness, and installation quality control, as well as the characteristics of the in-situ soil and compactibility characteristics of the embedment materials used. The compaction requirements given in Table 3 are based on attaining an average modulus of soil reaction (E') of 1000 psi (or an appropriate equivalent constrained modulus, Ms), which relates soil stiffness to soil type and degree of compaction. For particular installations, the project **engineer** should verify that the percent compaction specified meets performance requirements.

TABLE 3 Re	ecommendations for installation	and Use of Solls and Aggregates f	or Foundation and Pipe-2	cone Embedment
Soil Class ^A	Class I ^B	Class II	Class III	Class IV
General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media. Suitable for use as a drainage blanket and under drain where adjacent material is suitably graded or when used with a geotextile filter fabric (see X1.8).	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform fine sands (SP) with more than 50 % passing a #100 sieve (0.006 in., 0.15 mm) behave like silts and should be treated as Class III soils.	Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less	Difficult to achieve high-soil stiffness. Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less
Foundation	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above.	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above. Install and compact in 12 in. (300 mm) maximum layers	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6 in. (150 mm) maximum layers	Suitable for replacing over-excavated trench bottom for depths up to 12 in. (300 mm) as restricted above. Use only where uniform longitudinal support of the pipe can be maintained, as approved by the engineer. Install and compact in 6-in (150 mm) maximum layers
Pipe Embedment	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above Difficult to place and compact in the haunch zone.	Suitable as restricted above. Difficult to place and compact in the haunch zone.
Minimum Recommended Percent Compaction, SPD ^D	See Note ^C	85 % (SW and SP soils) For GW and GP soils see Note ^E	90 %	95 %
Relative Compactive Effort Required to Achieve Minimum Percent Compaction	low	moderate	high	very high
Compaction Methods	vibration or impact	vibration or impact	impact	impact
Required Moisture Control	none	none	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort

^A Class V materials are unsuitable as embedment. They may be used as final backfill as permitted by the engineer.

^B Class I materials have higher stiffness than Class II materials, but data on specific soil stiffness values are not available at the current time. Until such data are available the soil stiffness of placed, uncompacted Class I materials can be taken equivalent to Class II materials compacted to 95% of maximum standard Proctor density (SPD95), and the soil stiffness of compacted Class I materials can be taken equivalent to Class II materials compacted to 100% of maximum standard Proctor density (SPD90). Even if placed uncompacted (that is, dumped), Class I materials should always be worked into the haunch zone to assure complete placement.

^C Suitable compaction typically achieved by dumped placement (that is, uncompacted but worked into haunch zone to ensure complete placement).

^D SPD is standard Proctor density as determined by Test Method D698.

^E Place and compact GW and GP soils with at least two passes of compaction equipment.

Flexible Pipe

7. Installation

X1.6.2 *Embedment Compaction* - Embedment compaction requirements should be determined by the engineer based on deflection limits established for the pipe, pipe stiffness, and installation quality control, as well as the characteristics of the in-situ soil and compactibility characteristics of the embedment materials used. The compaction requirements given in Table 3 are based on attaining an average modulus of soil reaction (E') of 1000 psi (or an appropriate equivalent constrained modulus, Ms), which relates soil stiffness to soil type and degree of compaction. For particular installations, the project **engineer** should verify that the percent compaction specified meets performance requirements.

TABLE 3 RE	commendations for installation	and use of soils and Aggregates f	or Foundation and Pipe-2	Lone Empeanent
Soil Class ^A	Class I ^B	Class II	Class III	Class IV
General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media. Suitable for use as a drainage blanket and under drain where adjacent material is suitably graded or when used with a geotextile filter fabric (see X1.8).	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform fine sands (SP) with more than 50 % passing a #100 sieve (0.006 in., 0.15 mm) behave like silts and should be treated as Class III soils.	Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less	Difficult to achieve high-soil stiffness. Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less
Foundation	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above.	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above. Install and compact in 12 in. (300 mm) maximum layers	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6 in. (150 mm) maximum layers	Suitable for replacing over-excavated trench bottom for depths up to 12 in. (300 mm) as restricted above. Use only where uniform longitudinal support of the pipe can be maintained, as approved by the engineer. Install and compact in 6-in (150 mm) maximum layers
Pipe Embedment	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Difficult to place and compact in the haunch zone.	Suitable as restricted above. Difficult to place and compact in the haunch zone.
Minimum Recommended Percent Compaction, SPD ^D	See Note ^C	85 % (SW and SP soils) For GW and GP soils see Note ^E	90 %	95 %
Relative Compactive Effort Required to Achieve Minimum Percent Compaction	low	moderate	high	very high
Compaction	vibration	vibration	impact	impact
Methods	or impact	or impact		
Required Moisture Control	none	none	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort

^a Class V materials are unsuitable as embedment. They may be used as final backfill as permitted by the engineer.

^B Class I materials have higher stiffness than Class II materials, but data on specific soil stiffness values are not available at the current time. Until such data are available the soil stiffness of placed, uncompacted Class I materials can be taken equivalent to Class II materials compacted to 95% of maximum standard Proctor density (SPD95). and the soil stiffness of compacted Class I materials can be taken equivalent to Class II materials compacted to 100% of maximum standard Proctor density (SPD100). Even if placed uncompacted (that is, dumped), Class I materials should always be worked into the haunch zone to assure complete placement.

^C Suitable compaction typically achieved by dumped placement (that is, uncompacted but worked into haunch zone to ensure complete placement).

^D SPD is standard Proctor density as determined by Test Method D698.

^E Place and compact GW and GP soils with at least two passes of compaction equipment.

Flexible Pipe

Designation: D2321 – 18

7. Installation

7.5.1 **Percent Compaction of Embedment** —

The Soil Class (from Table 2) and the required percent compaction of the embedment should be established by the engineer based on an evaluation of specific project conditions (see X1.6.2). The information in Table 3 will provide satisfactory embedment stiffness and is based on achieving an average modulus of soil reaction, E', of 1000 psi (or an appropriate equivalent constrained modulus, M_s).

How do we know?

Was Floatation considered?

Introduction

The light weight of high density polyethylene (HDPE) and polypropylene (PP) pipe make it desirable because of the ease of handling and installation but this same benefit also makes these thermoplastic pipes prone to flotation. All pipe products, such as concrete and corrugated metal, are prone to flotation under the right circumstances. In fact, all pipe materials and other buried structures are subject to flotation. When the uplift on the pipe or structure exceeds the downward force of the weight and load it carries, the pipe (or structure) will rise or heave. Where flotation is a possibility, proper installation and/or anchoring of the pipe is critical. This document provides an analysis on minimum cover heights required to prevent pipe flotation for thermoplastic pipe sizes 12"-60". Buoyant force due to flowable fill is also discussed.

Table 2

Minimum Recommended Cover to Prevent Flotation of ADS Thermoplastic Pipe

Nominal Diameter	Minimum Cover
in. (mm)	in. (mm)
4 (100)	3 (77)
6 (150)	4 (102)
8 (200)	5 (127)
10 (250)	7 (178)
12 (300)	9 (228)
15 (375)	11 (280)
18 (450)	13 (330)
24 (600)	17 (432)
30 (750)	22 (559)
36 (900)	25 (635)
42 (1050)	29 (737)
48 (1200)	33 (838)
60 (1500)	40 (1016)

Calculation Notes:

- 1. The pipe is assumed to be empty. This not only simplifies the calculations but creates a condition that would encourage flotation. Unless the system is constructed to be watertight, this condition would not likely be found in an actual installation.
- 2. The outside diameter of the corrugated pipe was used to determine soil and water displacement.
- Saturated soil density used was 130 pcf which is typical for many saturated soil mixtures. Soils of greater densities will reduce the chance of flotation.
- 4. The water table was assumed to be at the ground surface, as illustrated in Figure 1(c), simulating a fully saturated soil. This assumption creates a "worst case" condition to yield more conservative results.
- 5. The soil load prism shown in Figure 2(a) was used to determine soil weight.
- For structural purposes, a minimum cover of 12" (0.3m) shall apply for 4"-48" (100-1200mm) pipe, and 24" (0.6m) for 60" (1500mm) pipe.

Designation: D2321 – 14^{E1}

7.6 *Minimum Cover* — ...The minimum depth of cover should be established by the engineer based on evaluation of specific project conditions. In the absence of an engineering evaluation, the following minimum cover requirements should be used...

Size	Class I	Class II, III, IV	Hydrohammer
12"	24"	36"	48"
18"	24"	36"	48"
24"	24"	36"	48"
30"	30"	36"	48"
36"	36"	36"	48"
42"	42"	42"	48"
48"	48"	48"	48"
54"	54"	54"	48"
60"	60"	60"	48"

Soooo... Were calculations performed?

Floating RCP caused by Earthquake in CA

The Power of Water Is Impressive!

FLOTATION (BUOYANGY) COMPARISON

American Concrete Pipe Association

Designation: D2321 – 18

7. Installation

7.11 *Field Monitoring* — Compliance with contract documents with respect to pipe

installation, including trench depth, grade, water conditions, foundation, embedment and backfill materials, joints, density of materials in place

and safety, should be **monitored by the engineer** at a frequency appropriate to project requirements. Leakage testing specifications,

while not within the scope of this practice, should be made part of the specifications for plastic pipe installations, when applicable.

Designation: D2321 - 18

7. Installation

7.11 *Field Monitoring* — Compliance with contract documents with respect to pipe installation, including trench depth, grade, water conditions, foundation, embedment and backfill materials joints, density of materials in place

and safety, should be **monitored by the engineer** at a frequency appropriate to project requirements. Leakage testing specifications,

while not within the scope of this practice, should be made part of the specifications for plastic pipe installations, when applicable.

Designation: D2321 – 18

7. Installation

7.11 *Field Monitoring* — Compliance with contract documents with respect to pipe installation, including trench depth, grade, water conditions, foundation, embedment and backfill materials, joints, density of materials in place, and safety, should be **monitored by the engineer** at a frequency appropriate to project requirements. Leakage testing specifications,

while not within the scope of this practice, should be made part of the specifications for plastic pipe installations, when applicable.

N-12 ST IB SOIL-TIGHT JOINT

Flexible Pipe

Designation: D2321 – 18

7. Installation

7.11 *Field Monitoring* — Compliance with contract documents with respect to pipe installation, including trench depth, grade, water conditions, foundation, embedment and backfill materials, joints, density of materials in place

and safety, should be **monitored by the engineer** at a frequency appropriate to project requirements. Leakage testing specifications,

while not within the scope of this practice, should be made part of the specifications for plastic pipe installations, when applicable.

Flexible Pipe

Designation: D2321 – 18

7. Installation

7.11 *Field Monitoring* — Compliance with contract documents with respect to pipe installation, including trench depth, grade, water conditions, foundation, embedment and backfill materials joints density of materials in place.

and safety, should be monitored by the engineer at a frequency appropriate to project requirements. Leakage testing specifications,

while not within the scope of this practice, should be made part of the specifications for plastic pipe installations, when applicable.

Flexible Pipe

Designation: D2321 – 18

Flexible Pipe

When Field Inspection of Pipes happens too late!

X3. Lower Side, Inspection, and Overfill

X3.2 *Inspection* – The owner is advised to provide for or require adequate inspection of the pipe installation at the construction site.

Flexible Pipe

Designation: D2321 - 18

X3. Lower Side, Inspection, and Overfill

X3.2 *Inspection* – The owner is advised to provide for or require adequate inspection of the pipe installation at the construction site.

Flexible Pipe

Designation: D2321 – 18

X1. Commentary

X1.13 *Deflection Testing* — To ensure specified deflection limits are not exceeded, the engineer **may** require deflection testing of the pipe using specified measuring devices. To allow for stabilization of the pipe soil system, deflection tests should be performed at least 30 days after installation. However, as a quality control measure, periodic checks of deflection may be made during installation.

X3. Lower Side, Inspection, and Overfill

X3.2 *Inspection* – The owner is advised to provide for or require adequate inspection of the pipe installation at the construction site.

Flexible Pipe

Designation: D2321 – 18

X1. Commentary

X1.13 **Deflection Testing** — To ensure specified deflection limits are not exceeded, the engineer may require deflection testing of the pipe using specified measuring devices. To allow for stabilization of the pipe soil system, deflection tests should be performed at least 30 days after installation.

However, as a quality control measure, periodic checks of deflection may be made during installation.

X3. Lower Side, Inspection, and Overfill

X3.2 *Inspection* – The owner is advised to provide for or require adequate inspection of the pipe installation at the construction site.

Flexible Pipe

Designation: D2321 – 18

X1. Commentary

X1.13 **Deflection Testing** — To ensure specified deflection limits are not exceeded, the engineer may require deflection testing of the pipe using specified measuring devices. To allow for stabilization of the pipe soil system, deflection tests should be performed at least 30 days after installation. However, as a quality control measure, periodic checks of deflection **may** be made during installation.

X3. Lower Side, Inspection, and Overfill

X3.2 *Inspection* – The owner is advised to provide for or require adequate inspection of the pipe installation at the construction site.

Flexible Pipe

Designation: D2321 – 18

X1. Commentary

X1.13 **Deflection Testing** — To ensure specified deflection limits are not exceeded, the engineer may require deflection testing of the pipe using specified measuring devices. To allow for stabilization of the pipe soil system, deflection tests should be performed at least 30 days after installation. However, as a quality control measure, periodic checks of deflection may be made during installation.

X1.13.1 Optional devices for deflection testing include electronic deflectometers, calibrated television or video cameras, or a properly sized "go, no-go" mandrel. Deflection measurements can be made directly with extension rulers or tape measures in lines that permit safe entry. To ensure accurate measurements, clean the lines before testing.

Designation: C1479 - 16

Strength Verified Before Shipment Deflection Testing – Not Relevant

Flexible Pipe

Designation: D2321 – 18

- Go-No-Go device
- 5% Deflection
- Stuck if deflection exceeded

AASHTO Section 27

Concrete Pipe Crack Limits Limits

27.6.4 – Longitudinal Cracks

Cracks </= 0.01" – Minor and only require a note

Cracks > 0.01" shall be measured and evaluated by the contractor for the engineer to review and approve.

Cracks > 0.01" and determined detrimental shall be sealed by a method approved by the engineer.

Cracks > 0.1" and determined by the engineer to be beyond satisfactory structural repair shall be remediated or replaced.

Flexible Pipe

AASHTO Section 30

Thermoplastic Deflection Limits

30.7.2 – Installation Deflection

5% Installed Deflection Exceeded – may indicate that the installation was substandard. Appropriate remediation, if any, will depend on the severity of the deflection, the condition of the pipe, and evaluation of the factor of safety using Section 12 "Buried Structures and Tunnel Liners" of the AASHTO LRFD Bridge Design Specifications.

7.5% Installed Deflection Exceeded – will require remediation or replacement of the pipe.

LET ME 'SPLAIN...NO, THERE IS TOO MUCH.

LET MESUNUP memegenerator.net

Concrete Pipe An Engineered Product

Determine In-Situ Soils

- Select Installation Type
- Determine Strength Class Req'd
- Specify Pipe Class & Installation Type
- Specify Post Installation Requirements

Concrete Pipe An Engineered Product

Determine In-Situ Soils

Select Installation Type

Determine Strength Class Req'd

Specify Pipe Class & Installation Type

Specify Post Installation Requirements Conduct Field Monitoring

Specify Manhole Connectors

Trench Depth Grade Water Conditions Correct Materials Density of Materials in Place Joints Safety

Specify Deflection Testing!!!

Flexible Pipe An Engineered Installation

Determine In-Situ Soils

Design Flexible Pipe Based on In-Situ Soils or Borrowed Soils

Determine Compaction Required for Structural Capacity

Calculate Deflection

Determine Bedding Requirements Based on Field Conditions

Determine Trench Width Based on Surrounding In-Situ Soils

Verify Depth of Cover is Acceptable for Flotation

APPLY

- Consider Risks associated with installing Pipe incorrectly (roadway settlement, poor pipe performance, reduced service life)
- Identify Ways to mitigate these Risks for Flexible Pipe and Rigid Pipe

Thank You!

ALEC PARLIAMENT, P.E. aparliament@foleyproducts.com 205.440.5775